
1/35

UE PRIP
Principes des réseaux informatiques par la

pratique
Application Layer

Isabel Amigo

2022

Notes:

2/35

Notes:

3/35

Today’s objective

• overview of the application layer

• understand the basics of app layer protocols

• app layer protocol example: HTTP (in this course)

• focus on the domain names system (in Lab DNS)

Approach:

• overview of the application layer, course and your questions
(please!)

• analyze more in depth the functioning of the DNS (Lab
session)

Notes:



4/35

1. Network applications

Notes:

5/35

Some network applications

you name them!

Notes:

6/35

Creating a network app

write programs that:

• run on (different) end systems

• communicate over network

• e.g., web server software communicates with browser software

no need to write software for network-core devices

• network-core devices do not run user applications

• applications on end systems allows for rapid app development,
propagation

Notes:



7/35

Application architectures

possible structure of applications:

• client-server

• peer-to-peer (P2P)

Notes:

8/35

Client-server architecture
server:

• always-on host

• permanent IP address

• data centers for scaling

clients:

• communicate with server

• may be intermittently connected

• may have dynamic IP addresses

• do not communicate directly with
each other

Notes:

9/35

P2P architecture
• no always-on server

• arbitrary end systems directly communicate

• peers request service from other peers, provide service in
return to other peers

! self scalability – new peers bring new service capacity, as
well as new service demands

• peers are intermittently connected and change IP addresses

! complex management

Notes:



10/35

Some vocabulary: process

process: program running within a host

• within same host, two processes communicate using
inter-process communication (defined by OS)

• processes in different hosts communicate by exchanging
messages (cf 1st course)

Notes:

11/35

Some vocabulary: sockets

process sends/receives messages to/from its socket

• socket analogous to door
• sending process pushes message out the door
• sending process relies on transport infrastructure on other side

of the door to deliver message to socket at receiving process

More about sockets in Transport layer course!

Notes:

12/35

Addressing processes

Q Consider an incoming message to the host, how to know to
which process is it destined?

Q Given that host is identified by an IP address, does an IP
address suffice to identify a process?

! No, several process running on same host!

ports In the TCP/IP model, 16-bit numbers that are used along
with IP addresses for identifying a process

Examples of well-known ports: HTTP server 80, mail server 25,
DNS server 53

Notes:



13/35

2. Application protocols

Notes:

14/35

Application protocols are similar to a human

conversation

Alice : Hello

Bob : Hello

Alice : What time is it ?

Bob : 11:55

Alice : Thank you

Bob : You’re welcome

! Works if both speak same language!

Notes:

15/35

Application protocols

A set of rules that specify:

• types of messages exchanged
e.g. request, response

• message syntax
what fields in messages and how fields are delineated

• message semantics
meaning of information in fields

• message ordering
rules for when and how processes send and respond to
messages

Open protocols : defined by IETF, allow interoperability e.g. :
HTTP, SMTP
Proprietary protocols: e.g. skype (no interoperability possible!)

Notes:



16/35

Two types of messages

App protocols can be defined using either:

• Strings or lines of characters

• Bits

! But transport layer allows to transfer bits, not Strings ⇒ need of
common representation e.g. usage of ASCII for characters

E.g. of characters defined on the ASCII table
A : 1000011b
0 : 0110000b
carriage return (CR) : 0001101b
line feed (LF) : 0001010b

Notes:

17/35

An example of an open application layer protocol:

HTTP

• HTTP: Hypertext transfer protocol

• Open protocol standardized by IETF

Q Do you use this protocol? What for?

Versions :

HTTP ∼ 1989
HTTP/1.1 RFC 2068 (1997), RFC 2616 (1999), RFC 7230 (2014)
HTTP/2 RFC 7540 (2015), adds encryption (among other diffs)
HTTP/3 draft, implemented in some browsers (e.g. Chrome sep.19)

! More on RFCs soon!

Notes:

18/35

(An RFC example)

https://tools.ietf.org/html/rfc7230

Notes:



19/35

Some other application layer protocols

• DNS

• SMTP

• POP3

• IMAP

• SNMP

• FTP

• XMPP

... among many others

Q Is it really OK to consider the DNS as an application-layer
protocol? to be discussed further after the DNS lab!

Notes:

20/35

3. Services from lower layers

Notes:

21/35

Application layer can rely on services from the

transport layer
Which services are needed form an app point of view?

Data integrity

• 100% needed for e.g. file transfer

• Some loss tolerated for e.g. voice

Delay

• Low delay important for some apps (e.g. online gaming)

• Delay-tolerant apps also exist (e.g. file transfer)

Throughput

• Apps needing large bandwidth (e.g. video)

• “elastic” apps which use whatever “remaining” capacity

Q Can you think of any other?

Notes:



22/35

Internet transport protocols services at a glance
TCP

• reliable transport between
sending and receiving process:
no losses, not disordered
messages

• flow control: not overwhelming
receiver

• congestion control: adapt
sending rate when network
overloaded

• connection-oriented: setup
required between client and
server processes

• no guarantees on delay,
throughput, security (though
security extension exists)

UDP

• unreliable data transfer between
sending and receiving process

• connection-less

• does not provide guarantees on:
reliability, flow control,
congestion control, timing,
throughput guarantee, security

Q Why using UDP then?
Q If an app is relying on UDP but
needs some of the not provided
guarantees, which solution?

Notes:

23/35

4. Summary

Notes:

24/35

Summary

Be sure you understand the following aspects:

• Application layer

• Application protocol

• Client-server architecture

• P2P architecture

• Services from the transport layer

Notes:



25/35

Appendix: An example of an
Internet application protocol:

HTTP

Notes:

26/35

HTTP overview I

• HTTP application protocol for distributed, collaborative,
hypermedia information systems

• foundation of data communication for the World Wide Web

• request–response protocol in the client–server architecture

Q example of client and server?

• client submits HTTP request to server

• server:
-provides resources (HTML files or other content) or
-performs other functions on behalf of client
-returns a response message to client.

• response contains:
-completion status information about the request
-requested content (if OK)

Notes:

27/35

Recall: web pages

• web page consists of objects

• object can be HTML file, JPEG image, Java applet, audio
file,. . .

• web page consists of base HTML-file which includes several
referenced objects

• each object is addressable by a URL
e.g. http://www.example.com/index.html, which indicates a
protocol (http), a hostname (www.example.com), and a file
name (index.html)

Uniform Resource Locator (URL) references a web resource by
specifying its location on a computer network and a mechanism for
retrieving it

Notes:



28/35

HTTP overview II

Uses TCP:

1. client initiates TCP connection (creates socket) to server, port
80

2. server accepts TCP connection from client

3. HTTP messages (application-layer protocol messages)
exchanged between browser (HTTP client) and Web server
(HTTP server)

4. TCP connection closed

Notes:

29/35

HTTP non-persistent and persistent

Non-persistent

• at most one object sent over
TCP connection connection then
closed

• downloading multiple objects
required multiple connections

Persistent

• multiple objects can be sent over
single TCP connection

Q Can you think of advantages and disadvantages of each one?

Notes:

30/35

HTTP Request message

Text protocol, containing ASCII (human-readable format)
characters, formated as follows:

• a request line (e.g., GET /images/logo.png HTTP/1.1)

• request header fields (e.g., Accept-Language: en).

• an empty line

• an optional message body

Notes:



31/35

HTTP Request message example

GET / HTTP/1.1\r\n

Host: asdf.com\r\n

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0\r\n

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n

Accept-Language: fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3\r\n

Accept-Encoding: gzip, deflate\r\n

DNT: 1\r\n

Connection: keep-alive\r\n

Cookie: _ga=GA1.2.156074956.1559831863\r\n

Upgrade-Insecure-Requests: 1\r\n

\r\n

Notes:

32/35

Response message

• status line: status code and reason (e.g., HTTP/1.1 200 OK)

• response header fields (e.g., Content-Type: text/html)

• an empty line

• an optional message body

• status line and header fields must end with < CR >< LF >

Notes:

33/35

Response message example

HTTP/1.1 200 OK\r\n

Date: Thu, 23 Jan 2020 13:11:43 GMT\r\n

Server: Apache\r\n

Upgrade: h2\r\n

Connection: Upgrade, Keep-Alive\r\n

Last-Modified: Fri, 25 May 2018 14:29:40 GMT\r\n

ETag: "53f-56d089932ee03-gzip"\r\n

Accept-Ranges: bytes\r\n

Vary: Accept-Encoding\r\n

Content-Encoding: gzip\r\n

Content-Length: 683\r\n

Keep-Alive: timeout=2, max=100\r\n

Content-Type: text/html\r\n

\r\n

body follows

Notes:



34/35

More on HTTP
Other important aspects we won’t have time to discuss in class

• HTTP is a stateless protocol (server maintains no information
about past client requests)
• cookies have been created to have some state

• small piece of data sent from a website and stored on the
user’s computer by the user’s web browser

• designed for websites to remember stateful information

• web cashing or proxy
• security

Q Any security concern in the example messages we have seen?
• alternatives HTTPS, HTTP/2

Notes:

35/35

Acknowledgements

The contents of these slides are partially taken from Computer
Networking a Top Down approach, J. KUROSE and K. ROSS and
K. KUROSE’s networking course
http://www-net.cs.umass.edu/cs453_fall_2013/ and from
e-book Computer Networking : Principles, Protocols and Practice,
third edition http://beta.computer-networking.info/

syllabus/default/index.html

Notes:


