
UE PRIP
2023

IMT Atlantique
Département Informatique
Technopôle de Brest-Iroise - CS 83818
29238 Brest Cedex 3
URL: www.imt-atlantique.fr

Lab 4: SDN

Version: 1.4

Report filled-in by:

http://www.imt-atlantique.fr/

3. INTRODUCTION 3.1. Sofware Defined Networks

1. Objectives
■ Understand the concept of SDN and figure out its differences comparing to the traditional architecture.

■ Gain insight into the operation of OpenFlow and observe the operations.

■ Program different basic SDN controllers based on the POX controller.

2. Pre-Lab
■ Read the introduction of this document

■ Familiarize with command ovs-ofctl , you can consult its man page

■ Familiarize with POX controller, read the POX’s API available in [3]. In particular, study the
following sections: ’Working with packets: pox.lib.packet’, ’OpenFlow Events: Responding to
Switches/Packet in’, ’OpenFlow Messages/ ofp packet out - Sending packets from the switch,
ofp flow mod - Flow table modification’ and ’Match Structure’.

3. Introduction
3.1. Sofware Defined Networks

Sofware Defined Networking (SDN) is an architectural approach that optimizes and simplifies network
operations and gives hope to change some limitations of current network infrastructures. First, it separates
the network’s control logic (the control plane) from the underlying routers and switches that forward the
traffic (the data plane). Second, it allows a logically centralized network control which is often realized as
an SDN controller, and where network switches become simple forwarding devices. See Fig. 1.

The four key characteristics to remember about SDN are [6]:

1. The control and data planes are disjoined

2. Forwarding decisions are flow-based instead of destination-based

3. Control logic is moved to an external entity, called SDN controller or NOS (Network Operating
System)

4. Network is programmable through applications running on top of the controller

Figure 1: Difference between traditional architecture and SDN

UE PRIP- Lab 4: SDN 1

3. INTRODUCTION 3.2. OpenFlow

SDN has gained significant attention among major industrial players including Cisco, Broadcom,
Google, IBM, and Intel, and has been deployed in wide area networks, campus networks, and data centers.

In this practical class, you will learn the fundamentals of SDN and gain hands-on experience. In order
to put all the theory into practice, we will use Mininet to emulate the entire network of switches (that
will be just simple forwarding devices, without any “brain” of their own), virtual hosts (running standard
Linux software), the links between them and an SDN controller.

3.2. OpenFlow
OpenFlow is a communication protocol that gives access to the forwarding plane of a network switch or
router over the network. It enables network controllers to program the path of network packets across a
network of switches. This separation of the control from the forwarding allows for more sophisticated
traffic management than is feasible using classical routing protocols. Also, OpenFlow allows switches from
different vendors -often each with their own proprietary interfaces and scripting languages- to be managed
remotely using a single, open protocol [7]. In other words, OpenFlow is an API that is standardized
between control plane and data plane. OpenFlow is an enabling technology for SDN.

How does OpenFlow work?

An OpenFlow Switch presents one or a set of flow tables (according on the OpenFlow version); each flow
table entry contains a set of packet fields to match, and an action, as shown in Fig. 2. When an OpenFlow
Switch receives a packet it has never seen before, for which it has no matching flow entries, it sends this
packet to the controller. The controller then makes a decision on how to handle this packet. It can drop the
packet, or it can add a flow entry directly in the switch on how to forward similar packets in the future.
More specifically, the process of a packet can be described as follows [4]:

■ If a packet matches an entry in the flow table, perform the actions according to the flow table.

■ If a packet does not match any entry in the flow table, send it to the Openflow controller:

– The controller will figure out what to do with such packet.
– The controller will then respond to the switch, informing how to handle such a packet so that

the switch would know how to deal with such packets next time.
– For each flow, ideally the controller will be queried once.

Figure 2: A flow table entry.

In the newest versions of OpenFlow, a switch has an Openflow pipeline which contains multiple flow
tables, each flow table containing multiple flow entries. Packets are matched against multiple tables in the
pipeline. Matching starts at the first flow table and may continue to additional flow tables.

In our lab exercise, we will be working with just one OpenFlow table for each switch.

UE PRIP- Lab 4: SDN 2

4. HANDS ON 4.1. Understanding flows: OVS configuration using OVSDB management protocol

3.3. Open vSwitch
Open vSwitch is an open source software switch designed to be used as a virtual switch in virtualized
server environments. A virtual switch forwards traffic between different virtual machines (VMs) on the
same physical host and also forwards traffic between VMs and the physical network. With virtual switches
we can have several switches supported by one same infrastructure. Open vSwitch is open to programmatic
extension and control using OpenFlow and the OVSDB (Open vSwitch Database) management protocol
[8].

OVSDB allows to manage (i.e. configure) and control the virtual switch, while OpenFlow allows to
control the switch (i.e. add forwarding rules). Both protocols are complementary and virtual switch can
work with either both at a time or just one of them. In this lab, we are going to interact first with an OVS
through OVSDB, and secondly through a python OpenFlow API (the POX controller). At any time, you
can use the OVSDB commands, for instance, to dump the flow table of the switch.

Open vSwitch (OVS) is not the only existing virtual switch. There are also, for instance, VMware
virtual switch (standard & distributed) and Cisco Nexus 1000V. OVS differs from the commercial offerings
from VMware and Cisco. One point worth noting about OVS is that there is not a native SDN Controller
or manager, like the Virtual Supervisor Manager (VSM) in the Cisco 1000V or vCenter in the case of
VMware’s distributed switch. Open vSwitch is also meant to be used with third-party controllers and
managers.

4. Hands On
4.1. Understanding flows: OVS configuration using OVSDB management protocol

The network you’ll use in this exercise includes a single virtual switch and three hosts connected as shown
in Fig. 3. We are not using an SDN controller but provide configuration information through the OVSDB
management protocol.

Figure 3: Topology without controller

1. Open the course’s VM

2. Open a terminal inside the VM, and go to the ˜/net labs/sdn directory. If the ˜/net labs/

directory is not present, you can obtain a local copy by cloning it:
git clone https://redmine.telecom-bretagne.eu/git/net labs . If it is present, up-

date its content: git fetch origin , git merge master .

3. Create the topology shown in Fig. 3, by launching Mininet with the following command:

sudo mn --topo single,3 --mac --switch ovsk --controller=none

UE PRIP- Lab 4: SDN 3

4. HANDS ON 4.1. Understanding flows: OVS configuration using OVSDB management protocol

Port name Port number Hosts connected to this port
s1-eth1
s1-eth2
s1-eth3

Table 1: Port numbers and connected hosts

This tells Mininet to create a topology with a switch and 3 hosts attached to it. The hosts will be
assigned static IP addresses and MAC addresses. In the above command, there are some important
keywords worth paying attention to:

■ —mac: makes the mac address of Mininet hosts the same as their node number, this just simplifies
the analysis of captures

■ —switch ovsk: uses Open vSwitch in kernel mode for each of the switches

■ —controller none: we are not using any controller in this first exercise

4. In order to double-check that everything started correctly, use the following Mininet commands, in
Mininet’s CLI:

■ nodes - to list all virtual devices in the topology

■ net - to list the links between them

■ dump - to see more info about the hosts

Before continuing you should make sure you know the working topology, the mapping between
switch’s port numbers and names, and the port through which each host is connected.

5. Use the following commands to complete Table 1.

■ sudo ovs-ofctl show s1 on a (new) terminal of the VM1

■ In Mininet’s console command net

OVSDB protocol includes also a client tool, we are in particular going to use the ovs-ofctl

command, which allows to access the flow tables of a switch. There are different sub-commands:

■ show < switch-name >: shows some informations about the switch, including the ports

■ dump-flows < switch-name >: dump all the flows of a switch

■ add-flow < switch-name > < flow >: add a flow in the switch, check the flow syntax

■ mod-flows < switch-name > < flow >: modify all the flows that include the same match pattern

■ del-flows < switch-name > < flow >: delete all the flows that include the same match pattern

You can find the complete specification in the man page of the ovs-ofctl command (type
man ovs-ofctl in a terminal) or see [2].

1You can also type any terminal command in Mininet, preceding the command by sh

UE PRIP- Lab 4: SDN 4

4. HANDS ON 4.1. Understanding flows: OVS configuration using OVSDB management protocol

Question 4.1.
Execute command sudo ovs-ofctl dump-flows s1 on a terminal. You should obtain an empty
answer. What is that command for?

6. Run the pingall command on Mininet’s CLI

Question 4.2.
The ping shouldn’t work. Explain why.

We will now fill in s1’s flow table using sudo ovs-ofctl add-flow command.

7. Run the following command lines from a terminal:

■ sudo ovs-ofctl add-flow s1 priority=1000,in port=1,actions=output:2

■ sudo ovs-ofctl add-flow s1 priority=1000,in port=2,actions=output:1

By these lines, we have added two flows to s1. We have indicated the priority, the in port and the
out port in the rules. The rule with higher value of priority overrules any other rule with lower value.

8. Type sudo ovs-ofctl dump-flows s1 . This allows you to check the flows you just added
before.

9. Check the connectivity with pingall.

Question 4.3.
Between which hosts is there connectivity? Explain.

10. Manually configure the connection between h1 and h3 using the following command lines

■ sudo ovs-ofctl add-flow s1 priority=1000,in port=1,actions=output:3

■ sudo ovs-ofctl add-flow s1 priority=1000,in port=3,actions=output:1

UE PRIP- Lab 4: SDN 5

4. HANDS ON 4.1. Understanding flows: OVS configuration using OVSDB management protocol

Question 4.4.
Verify again the connectivity with Mininet’s pingall command. Which is the result? In particular, explain
why you have no longer connectivity between h1 and h2. Why would you want to have connectivity
simultaneously between all hosts?

For the moment we have used one type of flow action: “output” which indicates to send the incoming
matched packet through the indicated output port (or interface). A flow action can also be “flood”, “drop”,
among others. Remember you can find more details about action types in the man page of the ovs-ofctl
command by typing man ovs-ofctl in a terminal or referring to [2].

The following is a useful extract of the man page on Flow Syntax:

Some ovs-ofctl commands accept an argument that describes a flow or flows. Such flow
descriptions comprise a series of field=value assignments, separated by commas or white
space. (Embedding spaces into a flow description normally requires quoting to prevent the
shell from breaking the description into multiple arguments.)

Flow descriptions should be in normal form. This means that a flow may only specify a
value for an L3 field if it also specifies a particular L2 protocol, and that a flow may only
specify an L4 field if it also specifies particular L2 and L3 protocol types. For example, if the
L2 protocol type dl type is wildcarded, then L3 fields nw src, nw dst, and nw proto must also
be wildcarded. Similarly, if dl type or nw proto (the L3 protocol type) is wildcarded, so must
be the L4 fields tcp dst and tcp src. ovs-ofctl will warn about flows not in normal form.

ovs-fields describes the supported fields and how to match them. In addition to match
fields, commands that operate on flows accept a few additional key-value pairs:

■ table=number: For flow dump commands, limits the flows dumped to those in the table
with the given number between 0 and 254. If not specified (or if 255 is specified as
number), then flows in all tables are dumped. (N.B. we will not use this key-value since
we are working with just one table per switch)

■ actions=[action][,action...]: Specifies a comma-separated list of actions to take on a
packet when the flow entry matches. If no action is specified, then packets matching the
flow are dropped. The following forms of action are supported (among others):

– output:port
– normal
– flood
– in port

For example, if you run the following command on your switch, you can get a switch acting like a hub:

■ sudo ovs-ofctl add-flow s1 priority=1000,actions=FLOOD

You can also specify the in port of the packet you want to be forwarded by the switch acting as a hub,
i.e. forwarded to all the ports except the one where it arrived.

11. We will try new actions on the switch and new matching rules. Delete the previous flows added to
s1, using command sudo ovs-ofctl del-flows s1

UE PRIP- Lab 4: SDN 6

4. HANDS ON 4.1. Understanding flows: OVS configuration using OVSDB management protocol

12. Inside the Mininet CLI, verify the ARP cache of every host (hi arp -n for i = 1 to 3). Wait till
they are empty, or use hi arp -d <address> to remove each entry.

On the other hand, to send the packets to a specific destination, another way to match a packet is to use
the destination IP address. To do so, you have to add a matching rule on the protocol type field of
the Ethernet header too (Ethernet type or dl type) (e.g. 0x0800: matches IPv4 source/destination IP
address). For example, you can run this command to forward the packets going to h1:

■ sudo ovs-ofctl add-flow s1 priority=1000,dl type=0x0800,nw dst=10.0.0.1,actions=output:1

13. Following previous examples, write a new configuration in order to ensure complete connectivity
between all hosts. Do not forget that you need also to take into consideration ARP messages. It can
be handy to remember that the Ethernet type code of ARP is 0x0806.

14. Verify connectivity

Question 4.5.
What flows did you added? Copy the exact syntax. What was the result of your connectivity check?

15. Once the connectivity is established between all hosts, open wireshark at s1 (From the Mininet
CLI, run s1 wireshark &).

16. Start a new capture at all s1’s three interfaces (s1-eth1, s1-eth2, s1-eth3)

17. Run a ping from h1 to h2.

Question 4.6.
Which protocol messages do you see? To which application is this protocol related?

18. Look at the ICMP messages and verify the source and destination IP addresses of these messages

Question 4.7.
Why don’t we get any ICMP message at h3?

UE PRIP- Lab 4: SDN 7

4. HANDS ON 4.2. OpenFlow, using POX controller

4.2. OpenFlow, using POX controller
In this section we are going to use an SDN controller, in this case POX. POX is a python-based OpenFlow
controller, which provides a python API with which one can develop its own applications. POX is a
suitable controller for learning purposes, since it is simple and allows to understand the SDN concepts
and manipulate OpenFlow switches. Please note that this controller might not be suitable for production
environments, where controllers such as OpenDaylight [1] are preferred.

We will keep the same topology already studied while adding a controller connected to s1 as shown in
Fig. 4.

Figure 4: Topology with controller

4.2.1. Exercise 1 - A first simple controller

In this exercise, we are going to move the commands you have issued manually to a high-level-language
script (python in this case), which will use POX’s API to send OpenFlow messages to the switch, in order
to instantiate the flows.

1. Exit the previous emulation by typing exit Mininet’s CLI and clean it up using sudo mn -c on
a terminal.

2. Go to the net labs directory: cd ˜/net labs/

3. Copy file ˜/net labs/sdn/static switch.py into /opt/pox/ext/ directory.
sudo cp ˜/net labs/sdn/static switch.py /opt/pox/ext/

4. Run the controller using these commands on a new terminal:

cd /opt/pox/

./pox.py static_switch

5. Open a new terminal and launch the topology by running this command:

UE PRIP- Lab 4: SDN 8

4. HANDS ON 4.2. OpenFlow, using POX controller

sudo mn --topo single,3 --mac --switch ovsk --controller remote

Notice that we have specified the --controller remote option. This tells Mininet that there will
be a controller running outside Mininet. Indeed, this is the controller you have run in step 4.

6. Test connectivity between hosts using the pingall command. All hosts must be reachable.

Question 4.8.
Get an in-depth look at the first matching rule in the controller file (lines from 32 to 45 of file static switch.py)
What is the function of the action provided by these lines?

7. Launch wireshark at s1.

8. Start a new capture in s1-eth0, s1-eth1, s1-eth2 and the loopback interface “lo“

9. In wireshark, use the visualization filter openflow_v1.

Question 4.9.
What protocol messages are captured now? What is the new protocol appearing in this exercise by
comparison to the last capture? Which is the protocol stack being used by this protocol?

4.2.2. Exercise 2 - L2 Learning switch

In this exercise, we are going to code a layer 2 learning switch using, as in the previous exercise, a high
level programming language (python) and the POX controller. The code that you have seen in the previous
exercise can help you understand how POX API works.
Question 4.10.
Which are the main differences between a Hub and a L2 Learning switch?

Implementation of the L2 learning switch

1. Copy file ˜/net labs/sdn/learning switch.py into /opt/pox/ext/ directory, for that you
can type the following on a terminal: sudo cp ˜/net labs/sdn/learning switch.py /opt/pox/ext/

2. Take a look to this file and in particular to the method act like hub(...). What is the action
used to ensure the hub behavior?

UE PRIP- Lab 4: SDN 9

4. HANDS ON 4.2. OpenFlow, using POX controller

We will now keep the same topology as in Exercise 1 but will change the controller. The objective is
to develop a layer 2 learning switch application. When a packet arrives to the switch, if the switch has
no rule matching that packet, it will send the packet to the controller. The controller will process the
packet. If the destination MAC of the packet is already associated with some port of the controlled switch,
the controller will add a flow entry to the switch, in order to get the packet sent to the given output port,
otherwise the controller will tell the switch to flood the packet on all ports, except the ingress port. At the
same time, when receiving a packet, the controller will learn from the packet’s “source mac address” and
its “input port”.

Note: if you need to print debugging information, you can call pox with the ----verbose option:

./pox.py --verbose learning_switch

Following there is a naive algorithm for simple learning switch application:

if (source mac address is new)

record the source mac and input port mapping

if (destination mac address is known)

forward the packet to the destination

install a flow table rule

else

FLOOD the packet

3. Complete the method act like switch() in file /opt/pox/ext/learning switch.py and
modify that file in order to have that method executed whenever a packet arrives to the controller
(instead of having method act like hub(...) being executed). Follow the comments provided
in the code.

4. Test the proper functioning of your controller. For that stop the running controller if any, and run
the new controller. Use, for instance, pingall command from Mininet’s CLI

5. You can change the number of hosts in the topology, by running again the emulation with the number
of hosts you want, for instance, for 10 hosts run
sudo mn --topo single,10 --mac --switch ovsk --controller remote

Your learning switch should work perfectly also in this topology.

Performance evaluation of the L2 learning switch and the Hub

Now your Learning Switch controller is working properly, let’s test its performance. We will measure
RTT (round trip time) using ping command and throughput using a command line tool called iperf. For
both cases, we are going to run two tests, between two different hosts each, at the same time. We are going
to run the tests both for the switch implementation and for the hub implementation. How to perform these
tests is explained as follows.

1. Stop the emulation and run it again with the following command
sudo mn --topo single,4 --link tc,bw=1000 --mac --switch ovsk --controller remote

The new option we have added, --link␣tc,bw=1000, tells Mininet to set all links’ capacities to
1Gbps.

2. Open a xterm at hi, i=1 to 4

UE PRIP- Lab 4: SDN 10

4. HANDS ON 4.2. OpenFlow, using POX controller

3. Run a 10 times ping to measure the average RTT between h1 and h2, and almost simultaneously run
another ping from h3 to h4:
From h2: ping -c 10 10.0.0.1

From h4: ping -c 10 10.0.0.3

Observe the results.

4. Use the command line tool iperf to test the throughput. At the already opened terminals, start the
following tests as simultaneously as possible:
At h1: iperf -s

At h2: iperf -c 10.0.0.1

At h3: iperf -s

At h4: iperf -c 10.0.0.3

Observe the results.
Let some time for the throughput test to run. Once the test finished, stop the servers (ctrl+c).

5. In the same way as before, test the performance of the hub implementation, in terms of RTT and
throughput. For that you need to modify your controller to use the act like hub() method, and run it
again. You do not need to restart the emulation.

Question 4.11.
What do you observe? What are the results obtained for RTT and bandwidth for the learning switch and
for the hub. Explain the differences found and the causes for that differences.

Include your file learning switch.py in the lab’s report. (see Appendix where room is provided
for this purpose.)

OpenFlow messages (Optional)

We will now take a look at the exchanged OpenFlow messages between switch and controller

1. Let’s start the controller again, to see all messages. Stop your running controller

2. Start a new wireshark capture at s1’s loopback interface

3. Run the controller again

Question 4.12.
What OpenFlow messages were captured after the controller coming up?

UE PRIP- Lab 4: SDN 11

4. HANDS ON 4.2. OpenFlow, using POX controller

4. Perform a one time ping from h1 to h2: h1 -c1 h2

Question 4.13.
What OpenFlow messages were captured after the first time h1 tries to communicate with h2? Explain the
purpose of the different messages.

5. Perform again a one time ping from h1 to h2

Question 4.14.
Do you see any OpenFlow message related to this second ping? Explain.

4.2.3. Exercise 3 - Extensions to traffic filtering (optional)

In this exercise, we will add some basic filtering feature to enforce a primitive security policy. For
simplicity, let us suppose we want to filter out any HTTP traffic. To do so, we must properly determine the
matching rule. Give a close look to POX documentation (in particular to the sections mentioned in the
Pre-Lab section). For example, a matching rule in normal form must specify the data link layer payload
type, (e.g. 0x0800 for IPv4) in this case, the protocol carried by the network layer packet, which is a
decimal number with the value between 0-255 and is predefined for each traffic (ICMP is 1, TCP is 6,
UDP is 17 [5], and the destination or source transport port designed by tp dst and tp src, respectively.

First of all, we will test the results of an HTTP request between h1 (where a web server will run) and
h2 which will act as client. We will try this before adding the filtering features. Everything should work
fine. To do so:

1. Start a wireshark capture at h1-eth0 and at h2-eth0

2. Run a web server at h1, for that, from Mininet’s CLI type: h1 python3 -m SimpleHTTPServer 80 &

3. Verify that your server is running well by accessing its index web page from h2, type at Mininet’s
CLI: h2 wget -O - h1

4. Look at both captures to see the packets exchanged. In particular observe the transport protocol
used by HTTP and the port at which the web server listens. You will need this information for your
matching rule.

UE PRIP- Lab 4: SDN 12

5. CONCLUSION

Question 4.15.
Provide a pseudo-code for the new block of code you will need to add to your controller in order to filter
out HTTP traffic. Do not proceed to the following steps if you don’t have a clear answer to this question!

5. Extend your learning switch application to drop HTTP traffic.
Here are some tips: Remember to specify your matching rule in normal form (see introduction
to this exercise), you might also need to take into account flows’ priorities. For troubleshooting,
at any moment you can use the command seen in Section 4.1 to query the switch flow table
(sudo ovs-ofctl dump-flows s1). To go from your pseudo-code to the python code, you will
need to take a close look to POX API [3].

6. Test your implementation as follows

(a) Run a wireshark capture on h1 and another one in h2
(b) Try again to access the index web page at h1 (h2 wget -O - h1)
(c) Observe the output and the captured traffic. If everything is working well, you shouldn’t be

able to recover the index web page as you did in step 3

Question 4.16.
Is your implementation working properly? What is the result of the HTTP request? Do you see any HTTP
packets in the captures? In which one? Explain your answer. Explain the new flow you have added in
order to obtain this behavior.

Update the solution you have provided in the Appendix.

5. Conclusion
Question 5.1.
What are the main components of an SDN architecture?

Question 5.2.
What is OpenFlow? What functionalities of OpenFlow have you used in this lab? Explain with your own
words.

UE PRIP- Lab 4: SDN 13

5. CONCLUSION

UE PRIP- Lab 4: SDN 14

REFERENCES

Question 5.3.
According to what you’ve seen in previous labs and in this lab. Summarize with your own words the main
difference between the classical networking paradigm and the SDN paradigm.

6. Acknowledgements
This lab was partly prepared based on:

■ SDN Bootcamp provided by professors in University of Wisconsin [10]

■ OpenFlow tutorial [9]

References
[1] The OpenDaylight controller. [online] https://www.opendaylight.org/.

[2] OpenvSwitch documentation. [online] http://openvswitch.org/support/dist-docs/

ovs-ofctl.8.txt.

[3] POX documentation. [online] https://noxrepo.github.io/pox-doc/html/.

[4] Open Network Foundation. Openflow switch specification v1.4, 2013.

[5] Assigned Internet Protocol Numbers IANA. [online] https://www.iana.org/assignments/
protocol-numbers/protocol-numbers.xhtml.

[6] Diego Kreutz, Fernando M. V. Ramos, Paulo Verı́ssimo, Christian Esteve Rothenberg, Siamak
Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive survey. CoRR,
abs/1406.0440, 2014.

[7] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2), 2008.

[8] Ben Pfaff and Bruce Davie. The open vswitch database management protocol. RFC 7047, 2013.

[9] OpenFlow Tutorial. [online] https://github.com/mininet/openflow-tutorial/wiki/

Create-a-Learning-Switch.

[10] SDN Bootcamp Spring 2013 Sections University of Wisconsin. [online] http://sdn.cs.wisc.
edu/bootcamp/.

UE PRIP- Lab 4: SDN 15

https://www.opendaylight.org/
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
https://noxrepo.github.io/pox-doc/html/
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://github.com/mininet/openflow-tutorial/wiki/Create-a-Learning-Switch
https://github.com/mininet/openflow-tutorial/wiki/Create-a-Learning-Switch
http://sdn.cs.wisc.edu/bootcamp/
http://sdn.cs.wisc.edu/bootcamp/

7. APPENDIX: YOUR EXERCISE 3’S CODE

7. Appendix: Your Exercise 3’s code
You can include your code learning switch.py in the box below.

UE PRIP- Lab 4: SDN 16

	Objectives
	Pre-Lab
	Introduction
	Sofware Defined Networks
	OpenFlow
	Open vSwitch

	Hands On
	Understanding flows: OVS configuration using OVSDB management protocol
	OpenFlow, using POX controller
	Exercise 1 - A first simple controller
	Exercise 2 - L2 Learning switch
	Exercise 3 - Extensions to traffic filtering (optional)

	Conclusion
	Acknowledgements
	Appendix: Your Exercise 3's code

	Report filled-in by::
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:
	:

