
29/09/2016 Introduction to Git

ILSD – Git
2022-2023

Work under Creative Commons BY-SA1 license 2 / 37

You are free:

§ to use, to copy, to distribute and to transmit this creation to the public;

§ to adapt this work.

Under the following terms:

§ Attribution (BY): you must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they endorse
you or your use of the work).

§ ShareAlike (SA): if you modify, transform, alter, adapt or build upon this
work, you may distribute the resulting work only under the same, similar or
a compatible license.

1http://creativecommons.org/licenses/by-sa/2.0/.

http://creativecommons.org/licenses/by-sa/2.0/

Important notes 3 / 37

§ If you do not understand something, please ask your
questions. We cannot answer the questions you do not ask. . .

§ If you disagree with us, please say it (we follow Crocker’s
rules2)

§ People don’t learn computer science by only reading few
academic slides: practicing is fundamental

2http://sl4.org/crocker.html

http://sl4.org/crocker.html

Concerning this lecture 4 / 37

§ Most of the slides come from the VCS lecture in the DCL TAF
ñ Student from the DCL TAF should be familiar with Git and

should not learn anything with this lecture
§ This is not an exhaustive Git lecture (we do not have the time)
ñ this lecture is NOT sufficient to be fluent with Git
§ Consider this lecture as a starting point (or a refreshing of your

brain for ex DCL students)
§ Understanding and using VCS is mandatory in software

development

Sentences one would have preferred not to hear 5 / 37

§ Aaaaah! Three months of work lost!
§ Oops. . . Was this file really important?
§ Great, everyone has finished! Who integrates all the parts?
§ Why did I wrote this piece of code?
§ Great functionality, but I think the last week version was better.

Uh. . . which one?
§ I cannot find the version we have made 6 years ago for

BigCustomer Inc., I need it immediately for a new contract!
§ I have already done this bugfix. . . on my laptop I left at home.
§ It doesn’t work anymore! Who messed up my code?

Motivations 6 / 37

§ Software traceability: tracking and documenting changes,
retrieving former versions

§ Flexibility: feature trials, quick rollbacks
§ Parallelism and team work: multi-sites, multi-computers,

multi-developers and multi-activities
§ Safety: “backup”3 with history
ñ One needs tools to solve these problems

3VCS are not (space) efficient backup systems

Version Control Systems (VCS) 7 / 37

§ Used for
§ storing files
§ keeping track of changes on those tracked files
§ sharing

§ Each collaborator works on a local copy
§ Synchronization with one (or several) remote server(s)
§ 2 families of VCS

§ centralised (Subversion, CVS, . . .)
§ distributed (Git, Mercurial, Darcs, . . .)

Architecture of a centralised VCS 8 / 37

WORKING
COPY

workspace #1

WORKING
COPY

workspace #2

WORKING
COPY

workspace #3

CENTRAL
REPOSITORY

synchro

synchro

synchro

Architecture of a distributed VCS 9 / 37

WORKING
COPY

REPOSITORY

workspace #1

WORKING
COPY

REPOSITORY

workspace #2

WORKING
COPY

REPOSITORY

workspace #3

REPOSITORY

synchro

synchro

synchro

synchro

synchro

synchro

Focus on a specific VCS: Git 10 / 37

Why Git?
§ very popular
§ many platforms provide services built on Git (Bitbucket, Gitlab,

GitHub)
§ a bit less intuitive than other VCS for beginners, therefore if

you are able to use Git, you will be able to use other VCS
§ . . . and because we had to choose a tool

Git architecture and vocabulary 11 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

Gitspace

Workspace

REMOTE
REPOSITORY

§ working directory = files where changes are made
§ staging area = current selected changes
§ current version = current reference version
§ (remote/local) repository = a database of changes

Git by the example 12 / 37

§ Practical use cases in order to learn few commands
§ setting up a new repository (init, remote url)
§ retrieving a repository (clone)
§ making changes in the working repository (status)
§ updating the remote environment (add, commit, push)
§ checking differences after changes (diff)
§ updating dev environment (fetch, pull)
§ diverging/branching (branch, merge, checkout)
§ . . .

§ Non-exhaustive use cases
§ Workflows

Let’s have a look at the terminal!
(I’ll probably forget the slides)

Retrieving a repository 13 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

REMOTE
REPOSITORY

git clone -n <url>git checkout <ref>

change

git clone <url>

change

$> git clone -n <url>

only creates the .git directory
$> git checkout <ref>

retrieves files from local repository into the working directory
$> git clone <url>

creates the .git directory and retrieves files into the working
directory; clone = clone -n + checkout

Making changes in the working directory 14 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

untracked

tracked

Checking the current state
$> git status

On branch master
Your branch is up to date with 'origin/master'.
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: file1
...

Untracked files:
(use "git add <file>..." to include in what will be committed)

file4
...

no changes added to commit (use "git add" and/or "git commit -a")

Updating the remote environment 15 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

REMOTE
REPOSITORY

git add git commit

change

git push

Example
$> git add file1 file2 file3 ...

add in the index of the staging area
$> git commit -m “add my super new feature”

. . .
$> git push

push into the remote repository

Checking differences after changes 16 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

modified staged commited

Diff commands
$> git diff

$> git diff --staged

$> man git-diff will help you

Updating dev environment (fetch) 17 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

REMOTE
REPOSITORY

git fetch

$> git fetch

§ retrieves updates from the remote repository
§ is safe

§ does not affect working directory ñ cannot lose uncommited
changes,

§ no automated merge

Updating dev environment (pull) 18 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

REMOTE
REPOSITORY

git pull

2. merge 1. fetch

$> git pull

retrieves updates from the remote repository and merge them
with the working directory

§ git merge: to be seen few slides later

Diverging: vocabulary 19 / 37

§ a branch = a reference to a version
§ can be seen as a “local checkpoint” (another says like a bookmark)

§ branching
§ creating a named reference to a version
§ the common way to work without messing with the main line

Diverging (branch) 20 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

git branch [-a]
git branch <ref>
git branch -d

$> git branch

list local branches
$> git branch -a

list all (local and remote) branches
$> git branch <ref>

creates a named branch from the current branch
$> git branch -d <ref>

deletes a named branch

Diverging (checkout) 21 / 37

WORKING
DIRECTORY

STAGING
AREA

CURRENT
VERSION

LOCAL
REPOSITORY

git checkout [-b] <ref>

change

$> git checkout <ref>

changes the current branch
$> git checkout -b <ref>

creates a branch from the current branch and changes to it
(“ git branch ` git checkout)

Diverging (merge) 22 / 37

§ Starting point: 2 branches (master + newawesomefeature),
HEAD points to master

$> git merge newawesomefeature

integrate changes from newawesomefeature branch into
master

§ Two situations
§ no conflict: changes from newawesomefeature are integrated in

the main (local) line, time to push. . .
§ conflicts: resolution needed in order to be able to push

§ Conflict resolution:
1. fix the conflicts (edit the files, keep/remove stuff)
2. add the changes
3. commit

Diverging scenario 23 / 37

A B C

D

E

F G

masterv0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

Initial situation

Diverging scenario 23 / 37

A B C

D

E

F G

masterv0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git branch testing

Diverging scenario 23 / 37

A B C

D

E

F G

masterv0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git checkout testing

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEAD

HEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

One commit later

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEAD

HEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git checkout master

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git checkout -b hotfix

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

One commit later

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git checkout master

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testing

master

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git merge hotfix

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testing

master

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git branch -d hotfix

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testing

master

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git checkout testing

Diverging scenario 23 / 37

A B C D

E

F

G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

One commit later

Diverging scenario 23 / 37

A B C D

E

F

G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git checkout master

Diverging scenario 23 / 37

A B C D

E

F G

master

v0.1

HEAD

testing

HEAD

master testing

HEADHEAD

hotfix

HEAD

testingmaster

hotfix

HEAD

HEAD

master

HEAD

master

HEAD

HEAD

master

testing

HEAD

HEAD

mastertesting

HEAD

$> git merge testing

Summary of a typical Git workflow 24 / 37

WORKING
DIRECTORY

STAGING
AREA

LOCAL
REPOSITORY

REMOTE
REPOSITORY

git clone

git add/rm

git commit

git fetch/pull˚

git checkout/branch/merge

git push

Adopting a workflow 25 / 37

§ one tool, many usages
§ tools alone do not solve development problems
§ need of a process that fits the team
§ many possible Git workflows (examples later)

§ centralised workflow
§ feature branch workflow
§ gitflow workflow
§ forking workflow
§ . . .

Centralised workflow 26 / 37

§ one central repository, one branch (master)
§ common when coming from centralised systems like

Subversion
§ common for small size teams
§ easy to understand for a newcomer

Source: Atlassian

https://www.atlassian.com/git/tutorials/comparing-workflows

Feature branch workflow 27 / 37

§ central repository + master branch = official project history
§ one branch per feature: no direct commit on the master branch
§ feature branches are pushed to the central repository
§ branches are then merged (after pull requests, feedbacks,

conflict resolutions)

A B

C D

E F

G H

I

v1 v1.1 master

feature1 feature2

HEAD

Gitflow workflow4 28 / 37

§ strict branching model designed around the project release
§ well-suited for large projects with deadlines (releases)
§ one branch one role, workflow defines their interactions
§ can be combined with feature branch workflow
§ project history = master (the releases) + development branch

Source: Atlassian
4A famous example:

https://nvie.com/posts/a-successful-git-branching-model/

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://nvie.com/posts/a-successful-git-branching-model/

Forking workflow 29 / 37

§ one serverside repository per developer
§ each developer manages her repository and make pull

requests to the reference repository
§ typical model when contributing to a FLOSS5 project hosted on

GitHub: “Fork us on GitHub”

Source: Atlassian

5https://www.gnu.org/philosophy/floss-and-foss.en.html

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.gnu.org/philosophy/floss-and-foss.en.html

Workflows: summary 30 / 37

§ chosen workflow depends on the team’s concerns and
organisation
§ no one-size-fits-all Git workflow

§ feature workflow: business domain oriented
§ forking and gitflow workflows: repository oriented
§ what is a good workflow?

§ enhance or limit team efficiency?
§ scale with team size?
§ easy to undo mistakes and errors?
§ impose any new unnecessary cognitive overhead to the team?
§ does it limit conflicts?

VCS pratices 31 / 37

§ Git
§ useful and powerful tool
§ . . . but a tool alone does not solve all problems. It can also create

ones
ñ developers do not only need tools, but also working processes

§ Good practices
§ formalizing the process/workflow
§ coordinating with co-workers
§ testing before sending changes
§ updating before sending a change
§ commiting meaningful changes
§ commiting often
§ adding meaningful messages for commits
§ not commiting generated files
§ short-lived branches

VCS in practice: how to start? 32 / 37

§ By practicing
§ at home
§ during every lab sessions, even in non-CS context
§ ILSD UEs: FIAB, CAD, PROCOM

§ One usually needs a server to host repositories6

§ Some questions to ask before chosing
§ do you want to make your project public?
§ is there any security, privacy or IP problems with the project?
§ is your project a cornerstone of your business?

§ Your answers should drive your choices of VCS hosting
§ simple and free non-professional account on an open platform
§ paid service on a platform
§ installation of your own VCS server

6. . . but it is not mandatory: you can use Git in serverless mode! See later

Git in practice: which platform to start with? 33 / 37

§ IMTA infrastructure for academic projects and for learning:
§ Gitlab: https://gitlab.imt-atlantique.fr/7

§ Redmine: https://redmine-df.telecom-bretagne.eu/
§ Many platforms can be used without any fee:

§ Gitlab: https://about.gitlab.com/
§ GitHub: https://github.com/
§ Bitbucket: https://bitbucket.org/
§ Assembla: https://www.assembla.com/
§ Sourcehut: https://sourcehut.org/
§ . . . and probably many other

§ . . . but you can also install your own server!

7prefer it rather than redmine-df which will probably die in a near future

https://gitlab.imt-atlantique.fr/
https://redmine-df.telecom-bretagne.eu/
https://about.gitlab.com/
https://github.com/
https://bitbucket.org/
https://www.assembla.com/
https://sourcehut.org/

Serverless mode: a simple way to start with Git 34 / 37

§ Git can also be used without any other host
1. $> mkdir mycode
2. $> cd mycode
3. $> git init

initialize a new Git repository
§ that type of Git repository can be shared

§ as every folder (copy/paste on an USB key, . . .)
§ or using a Git command to add a remote repository (it has to exist)

$> git remote add <name> <url>

Conclusion 35 / 37

§ Tendency to confuse VCS and Git
§ Basic principles of VCS

§ basic principles
§ two main families: centralised vs decentralised
§ tools diversity

§ Some good practices for VCS/Git usage
§ Importance of a workflow

§ should be simple
§ should enhance the team productivity
§ should be oriented by business requirements

§ VCS usage should be an habit, not a constraint

Resources 36 / 37

§ VCS
§ https://homes.cs.washington.edu/~mernst/advice/version-control.html
§ https://betterexplained.com/articles/a-visual-guide-to-version-control/
§ https://betterexplained.com/articles/

intro-to-distributed-version-control-illustrated/

§ Git
§ https://git-scm.com/
§ https://git-scm.com/book/en/v2/ (Pro Git book)
§ http://justinhileman.info/article/git-pretty/
§ https://betterexplained.com/articles/aha-moments-when-learning-git/
§ https://rachelcarmena.github.io/2018/12/12/how-to-teach-git.html

§ Subversion: http://svnbook.red-bean.com/
§ Mercurial: https://www.mercurial-scm.org/

https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://betterexplained.com/articles/a-visual-guide-to-version-control/
https://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/
https://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/
https://git-scm.com/
https://git-scm.com/book/en/v2/
http://justinhileman.info/article/git-pretty/
https://betterexplained.com/articles/aha-moments-when-learning-git/
https://rachelcarmena.github.io/2018/12/12/how-to-teach-git.html
http://svnbook.red-bean.com/
https://www.mercurial-scm.org/

Gentle reminder 37 / 37

" Important notes
§ if you do not understand something, please ask your

questions. We cannot answer the questions you do not ask. . .
§ if you disagree with us, please say it (we follow Crocker’s

rules8)
§ people don’t learn computer science by only reading few

academic slides: practicing is fundamental

8http://sl4.org/crocker.html

http://sl4.org/crocker.html

