Cheat sheet – λ -calculus

- Free variables vs bound variables -

Free variable	bound variable
defined outside a term	intern to the term
name is essential (cannot be modified)	name is not important (can be modified)
Inductive definition of Free Variables FV : $\begin{cases} FV(x) = \{x\}\\ FV(T_1T_2) = FV(T_1) \cup FV(T_2)\\ FV(\lambda x.T) = FV(T) \setminus \{x\} \end{cases}$	

– Substitution –

 $[x\mapsto T_1]T_2$ is the term defined by replacing all free occurrences of x within T_2 by T_1

Inductive definition of substitution on $\Lambda_{\mathcal{X}}$: $(1) [x \mapsto T]x = T$ $(2) [x \mapsto T]y = y \qquad \text{if } x \neq y$ $(3) [x \mapsto T]T_1T_2 = [x \mapsto T]T_1[x \mapsto T]T_2$ $(4) [x \mapsto T]\lambda y.T' = \lambda y.[x \mapsto T]T' \qquad \text{if } x \neq y \text{ and } y \notin FV(T)$

- α -conversion or α -equivalence (renaming) -

renaming a defining occurrence and all its depending bound occurrences

$$\lambda x.T =_{\alpha} \lambda y.[x \mapsto y]T$$
 if $y \notin FV(T)$

e.g.: $\lambda x.x =_{\alpha} \lambda y.y$ but $\lambda x.y \neq_{\alpha} \lambda x.z$

 $---\beta$ -reduction --

$$\lambda x.T_1T_2 \to [x \mapsto T_2]T_1$$

can be applied anywhere in a term