Cheat sheet $-\lambda$-calculus

$\begin{aligned} T::= & x \\ & \mid(T T) \\ & \mid(\lambda x . T) \end{aligned}$	(variable) (application) (λ-abstraction)

- application is left-associative: $T_{1} T_{2} T_{3}=T_{1}\left(T_{2} T_{3}\right)$
- λ-abstraction is right-associative: $\lambda x \cdot \lambda y \cdot T=\lambda x \cdot(\lambda y \cdot T)$ and $\lambda x \cdot T_{1} T_{2}=\lambda x \cdot\left(T_{1} T_{2}\right)$
- $\left(T_{1} T_{2}\right)=T_{1} T_{2}$

Well-known terms

- $\left.\mathrm{I}=\lambda x \cdot x{ }_{x}^{\prime}{ }^{\lambda}\right\rangle_{x}$

- $\mathrm{S}=\lambda x \cdot \lambda y \cdot \lambda z \cdot((x z)(y z))$
S

Free variables vs bound variables

Free variable	bound variable
defined outside a term	intern to the term
name is essential (cannot be modified)	name is not important (can be modified)

Substitution

$\left[x \mapsto T_{1}\right] T_{2}$ is the term defined by replacing all free occurrences of x within T_{2} by T_{1}
(1) $[x \mapsto T] x=T$

Inductive definition of
(2) $[x \mapsto T] y=y \quad$ if $x \neq y$
substitution on $\Lambda_{\mathcal{X}}$:
(3) $[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2}$
(4) $[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime} \quad$ if $x \neq y$ and $y \notin F V(T)$
α-conversion or α-equivalence (renaming)
renaming a defining occurrence and all its depending bound occurrences

$$
\begin{aligned}
& \lambda x . T={ }_{\alpha} \lambda y .[x \mapsto y] T \text { if } y \notin F V(T) \\
& \text { e.g.: } \lambda x . x={ }_{\alpha} \lambda y . y \text { but } \lambda x . y \neq{ }_{\alpha} \lambda x . z
\end{aligned}
$$

β-reduction

$\lambda x . T_{1} T_{2} \rightarrow\left[x \mapsto T_{2}\right] T_{1}$
can be applied anywhere in a term

