d_nd

IMT Atlantique
Bretagne-Pays de la Loire
Ecole Mines-Télécom

Compilation
A crash course

Fabien Dagnat
ELU 610 - C7
15t semester 2019

Plan

o The structure of a compiler

e Lexing

e Parsing

e Core

2/33

Progress 3/33

0 The structure of a compiler

What is a compiler? 4/33

It is a program transformer from £; to £,

Source program . Translated program
. | Compiler . 0
in language £ in language £

L9 is "more" executable than £’

Most of the time, a program in L, is directly executable
either by a machine (e.g. £° = X64)
or by an ' (e.g. £O = OCaml bytecode)

Often a compiler is composed of a flow of compilers

compilery compilery compiler,
1 Lo - it

an abstract machine is a piece of software acting as a machine

Structure of a compiler 5/33

It is a composed of three stages

front end in charge of recognizing £/ (e.g. gcc has C, C++, Go, ...)
core doing the hard work

back end in charge of emitting £° (e.g. gcc has X64, ARM, ...)

e

~

= <
S Front Back E———
ource program ranslated program
in language £/ egld eﬁnod in language £9
1 N A% 1
Core
= e
S Front | Back E——
ource program ranslated program
in language £} enld eng in language £$
Ly L3
\NE— —

-

Several paths are possible

Front end 6/33

It checks whether the program is syntactically correct
It belongs to the language £’

It must build an internal representation of the program
It is an internal data structure of the compiler

It is highly dependent of the input language

It is decomposed in two parts

recognizes in a character stream
recognizes in a token stream

(13) () 1)

token
Character Lexer Parser Abstract
stream exe Syntax Tree
control

’ 0y ’ 0y ’ ’ +
10730 74t X next next next / \
13 x1

Core 7 /33

Works on internal data structures
Is in charge of the verification of validity () of the program

In charge of the main transformation work, for instance

simplify programs by removing useless elements
transform function calls
transform object oriented access

Relatively usual software

Functional paradigm is very adapted for this kind of code
recursive functions for the visiting part
sum types for representing the various elements
product types to add information to the various elements
pattern matching for the recognition of structure

Back end 8/33

Translates internal data structures in instructions of the target
language

movq $1, %rax
; some code to get the value of x1
addq $26, %rax

Implements all optimizations specific to the target
Complex requiring to master the target machine
Not in the scope of this introduction...

@ The structure of a compiler
Q Lexing

e Parsing

e Core

Lexical analyzer (a.k.a lexer) 10/ 33

A lexer is in charge of reading enough characters from an entry
stream to produce a token

To be efficient it is generally built as an automaton where

transitions correspond to the received characters
final state corresponds to the production of the token

+
start 0 ADD

a-Z a-z,0-9

When reaching a final state, it produces a token (data structure
for the parser)

Building a lexer 11/33

One way to define such an automaton is to define a set of

A translation rule is composed of a and an

the pattern is defined using a regular expression specifying the
accepted input

the action defines what to do in case of accepting (often just
returning the right token)

For the previous slide example

| ['@'="9"]+ { INT((+ input converted in int «)) }
| '+ { ADD }
[['a'="z']['a'="'z"'@"="9"]* { VAR((input «)) }
A Domain Specific Language: OCamllex
a compiler ocamllex producing OCaml code for the automaton

OCamllex syntax 12/33

File with extension .ml11

‘{ (» OCaml code: optional prelude *) } \ as is in the result

(» useful regular expressions only for regexp part «)

let ident = regexp

let ident = regexp compiled as an automaton

(» a group of rules «) actions executed

rule ident [identl ... iden nl=parse |- on accepting

| regexp <{(x OCaml code M translated as a function

| regexp <{(» OCaml code «) }
(» another group of rules #)
and ident [ident1 ... identn] = parse

‘{ (» OCaml code: optional postlude *) } ‘ as is in the result

OCamllex regexp syntax by example 13/33

L' "\014" "\t" "\o12']+ at least one space

OCamllex regexp syntax by example 13/33

L' "\014" "\t" "\o12']+ at least one space
(C'\n" "\r'1] "\r\n") newline

OCamllex regexp syntax by example 13/33

L' "\014" "\t" "\o12']+ at least one space
(C'\n" "\r'1] "\r\n") newline
[*'\n" "\r'] any character except newline

OCamllex regexp syntax by example 13/33

L' "\014" "\t" "\o12']+ at least one space
(C'\n" "\r'1] "\r\n") newline
[*'\n" "\r'] any character except newline

ll//”[/\ l\nl l\rl]*

OCamllex regexp syntax by example 13/33

L' ' '\o14' '\t' '\Q12']+ at least one space
(C'\n" "\r'1] "\r\n") newline
[*'\n" "\r'] any character except newline
"//"EA '\nt '\t]x C like line comment
Suppose

let digit=['0'-'9"]

let letter=['a'-"'z'"'A'='7"]

let id_char = (letter | digit | '_")
letter id_char* as id

OCamllex regexp syntax by example

L' ' '\o14' '\t' '\Q12']+ at least one space
(C'\n" "\r'1] "\r\n") newline
[*'\n" "\r'] any character except newline
"//"EA '\nt '\t]x C like line comment
Suppose

let digit=['0'-'9"]

let letter=['a'-"z"'A"-"'2"]

let id_char = (letter | digit | '_")

13/33

letter id_char* as id identifiers, id contains the result

integers

OCamllex regexp syntax by example

L' ' '\o14' '\t' '\Q12']+ at least one space
(C'\n" "\r'1] "\r\n") newline
[*'\n" "\r'] any character except newline
"//"EA '\nt '\t]x C like line comment
Suppose

let digit=['0'-'9"]

let letter=['a'-"z"'A"-"'2"]

let id_char = (letter | digit | '_")

13/33

letter id_char* as id identifiers, id contains the result

integers digit+as nb
floating point numbers

OCamllex regexp syntax by example

L' ' '\o14' '\t' '\Q12']+ at least one space
(C'\n" "\r'1] "\r\n") newline
[*'\n" "\r'] any character except newline
"//"EA '\nt '\t]x C like line comment
Suppose

let digit=['0'-'9"]

let letter=['a'-"z"'A"-"'2"]

let id_char = (letter | digit | '_")

13/33

letter id_char* as id identifiers, id contains the result

integers digit+as nb
floating point numbers

digit* '.'digitx (['e" 'E']J['+"' '-']1? digit+)? asnb

Generated OCaml code 14 /33

Each rule name al ... an gives a function name taking args

al, ... an, the user arguments
a buffer containing the stream of character of type Lexing.lexbuf

This function matches the characters in the buffer to execute
the corresponding accepting action when called

it selects the regexp giving the longest part matched
in case of equality it selects the first defined

The standard library module Lexing also provides

two constructors for buffers: from_channel and from_string
lexeme buf returning the matched string of buf

Only one automaton is generated even for several entry points

the automaton is determinized and minimized
its code is finally put between the prelude and postlude

An example and the flow 15/33

File formulalLexer.mll

{
type token =EOF | AND | OR | TRUE | FALSE

}
let space=[" "' '"\t' "\n']
rule token = parse

| space+ { token lexbuf }

| eof {EOF}
| "and” { AND }
"or" {OR}

I
| "true” { TRUE }
| "false” { FALSE }
ocamllex formulalLexer.mll produces formulalLexer.ml

It then can be compiled using ocamlc
it can contain errors if the ml11 file contained wrong OCaml code

Progress 16 /33

e Parsing

Which kind of grammar? 17 /33

For most reasonable language syntax, regular expressions are
not sufficient

We must use more powerful grammars but keep efficiency of
parsing
We use context-free grammars (CFG)

defined only by production A — mwhere A€ Vand me (XU V)*
In this course, we will focus on LR(1) parsing by using Menhir?
Menhir

offers a DSL for defining grammars in .mly files
has a tool compiling a grammar spec. to OCaml code (menhir)

Menhir follows a flow similar to OCamllex

°http://gallium.inria.fr/~fpottier/menhir

http://gallium.inria.fr/~fpottier/menhir

An example 18 /33

File formulaParser.mly

%token AND OR EOF TRUE FALSE
%token <string> IDENT
%start< string > formula ¢

The token type

An entry point with its return type

%%

formula: c=disj EOF {c}

disj:

| c=conj OR d=disj {"("*c*" or "Ad*")"
| c=conj {c}

conj:

| s=ident_or_const AND c=conj { "("*s*" and "4c*")" }
| s=ident_or_const {s}

ident_or_const:

| id=IDENT {id}

| TRUE { "true"” }

| FALSE { "false" }

% Grammar Actions

Some remarks 19/33

The token type is now generated within the parser
The lexer does not define it anymore but imports the parser

Each entry point (%start) gives a parsing function of type
(Lexing.lexbuf -> token) -> Lexing.lexbuf -> string

The lexer must be given to the parser

let compile file =
try
let input_file = open_in file in
let result = formula token (Lexing.from_channel input_file) in
close_in (input_file);
printf "read %s\n" result
with Sys_error s ->
printf "Can't find file '%s'" file
let () = Arg.parse [] compile ""

The result of parsing 20/ 33

In general, the result of parsing is a data structure representing
programs called an (AST)

Defined using recursive sum types

type t =
| Var of string
| Bool of bool
| Andof t « t
|Oroft+t

Manipulated by recursive functions

let rec string_of = function
| Var s =>s
| Bool true -> "true”
| Bool false -> "false”
| And(f1,f2) => " ("*(string_of f1)*" and "*(string_of f2)*")"
| Or(f1,f2) => " ("*(string_of f1)*" or "*(string_of f2)*")"

The example revisited

%{

open FormulaAst Prelude
%3}
%token AND OR EOF TRUE FALSE
%token <string> IDENT
%start<FormulaAst.t > formula

%%

formula: c=conj EOF {c}

conj:

| d=disj AND c=conj { And(d,c) }

| d=disj {d}

disj:

| s=ident_or_const OR d=disj { Or(s,d) }

| s=ident_or_const {s}
ident_or_const:

| id=IDENT { Var id }

| TRUE { Bool true }
| FALSE { Bool false }

%%

21/33

The new complete flow 22/ 33

formulalLexer.mll formulaParser.mly
<‘ ocamllex > @ean
formulaLe yer.ml 1 formulaParser.ml
Parser
Lexer ~
TRUE AND IDENT("x1") formulaAst.ml
token N
Character lexer | Abstract
stream e Syntax Tree
control
vt urel Y token token token And
Ya) ynl ydl r IXI)]1 / \
Bool Var
true "x1"

@ The structure of a compiler
G Lexing

e Parsing

Q Core

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop

Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value
While descending into the AST, naming information must be

/ \
e \Var Var/

Bool

AN

Bool

true ”xW” ”x2” false

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop

Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value

While descending into the AST, naming information must be

collected
["x1"+>true;"x2"+—falsel And

/ \
e \Var Var/

Bool

AN

Bool

true ”xW” ”x2” false

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop
Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value

While descending into the AST, naming information must be

collected
["x1"+—>true;"x2"+—>false] And

[—n—1 Or [—n—T Or

AN N

Bool Var Var Bool

true "x1" "x2" false

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop
Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value

While descending into the AST, naming information must be

collected
["x1"+—>true;"x2"+—>false] And

[—n—1 Or [—n—T Or

2 N RN

[—un—17] Bool [—u—] Var Var Bool

true "x1" "x2" false

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop

Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value

While descending into the AST, naming information must be

collected
["x1"+—>true;"x2"+—>false] And

T T

[—u—] Or [—un—T Or

2 N

[—un—17] Bool [—i—] Var [—un—] Var [—n—1] Bool

true "x1" "x2" false

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop

Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value
While descending into the AST, naming information must be

collected

[—u—] Or [—u—T Or

/ N

[—u—1] Bool true [—i—] Var true [—u—1] Var false [—i—1] Bool false

| \“X‘ﬁ’"/
true \‘SQ"/‘ false

["x1"+—>true;"x2"+—>false] And

/\

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop

Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value
While descending into the AST, naming information must be

collected
["x1"+—>true;"x2"+—>false] And
[—n—1] Or “true \Or false
[—u—1 Bool true [—i—] Var true [—u—1] Var false [—u—1] Bool false

| N | |
true \“x%‘/‘ false

Evaluation 24 / 33

One way to execute a program is to use an
often called a Read Eval Print Loop
Consists in producing a from an AST
It uses a recursive visit of the AST to synthesize the value

While descending into the AST, naming information must be

collected
["x1"+>true;"x2"+—false]l And false

[—u—] Or true [—n—] Or false
[—u—1 Bool true [—i—] Var true [—u—1] Var false [—u—1] Bool false

| N | |
true \“x%‘/‘ false

Formalization 25/ 33

Such visit can be formalized using big step Structural
Operational Semantics
values are from the boolean algebra B = {T,F} with A and Vv
TAT=T.FAb=bAF=F,TVvb=bVT=T,FVF=F
an environment function £ mapping variable names to values
dom gives its domain, £(x) gives the value associated to x in £

judgements of the form £ - AST term value

(1) £ Bool true = T (2) £~ Bool false — F
X € dom(é’) (E-Fy by E-Fo bo
EVar x = £(x) EF And(Fi,F) = by A bo
E-F = b EFFo= b
EOr(F,F) = b1 Vb

(5)

Implementation 26 / 33

open FormulaAst
let eval env formula =
let rec eval_rec = function
| Var s ->List.assoc s env
| Bool true -> true
| Bool false -> false
| And(f1,f2) => (eval_rec f1) && (eval_rec f2)
| Or(f1,f2) ->(eval_rec f1) || (eval_rec f2)
in
eval_rec formula

Here, as the environment is constant during the visit, it is made
global to the visting function (eval_rec)
In implementation, we should take care of errors (x & dom(£))

Type 27/ 33

Evaluation can lead to runtime errors
Typing "approximates" evaluation to detect a maximum of
runtime errors in advance
the "value" set is simplified and called type set
a new "value" is created to represent errors L
operations are defined on this simplified set
For our example
all booleans values are approximated by the type boo/
A and V are both transformed in ®
bool ® bool = booland L @ x =x® L =1
the environment is approximated by a type environment I
= Fy by M= Fo:bo

3
(1) I = Bool b : bool = And(F1,F2) : by @ bo
@) = F: by =F b
(2) T'=var x :T(x) I=0r(F,F): by ® b

Usefulness of types 28 /33

Subject reduction theorem (safety)

P T/ T# L g-P—v, @bv: T g+ P
Well-typed programs cannot "go wrong" (produce errors)
Furthermore computing types is much cheaper than evaluating

In general, Halting and Error discovery are
Any typing must rejects correct (but too complicated) programs

all programs

well typed programs

Usefulness of types 28 /33

Subject reduction theorem (safety)

P T/ T# L g-P—v, @bv: T g+ P

Well-typed programs cannot "go wrong" (produce errors)
Furthermore computing types is much cheaper than evaluating
In general, Halting and Error discovery are

Any typing must rejects correct (but too complicated) programs

needs a compromise between flexibility and safety
to achieve safety, runtime checks are often needed

all programs
programs using

heterogenous lists
well typed programs,
yped prog programs using
unbounded arrays

More on types 29 /33

Type algebra are often much more complex
more values
new types during typing...
specific relation between types (e.g. subtyping)
Often the developer must add type annotations

:givenl, Pand r,isl -~ P : 7 true?
the simply typed A-calculus

syntax: M == ... | Ax:7.Mandtypes 7 :=7 — T

typing

x:Terl Mx:r-M: 1 r=M r—=7 Fr=mM 7
Frex:7 TExer M7 —7 re MM, : 7

With no annotation, it is

: given Pfinds I and 7 such thatT - P : 7 is true
much harder

Optimization 30/33

The step containing the most difficult algorithms and heuristics

It consists in transformation of the AST to reduce certain
consumption (time, memory, energy, ...)
Can be generic or specific to a target
For example
forallb,FAb=F
so And(Bool false, F) can be transformed in Bool false
In real life much more complex!
taking out of loop code not depending on the loop
loop unrolling
propagating constants, inlining small functions
removing dead code
transforming variables into StaticSingleAssignment
tail-call, closure elimination

Compilation 31/33

Transform each element of the AST to machine operation
For example, let’s suppose the following machine

it manipulates only one bit

it has three registers RA, RB and RC (of one bit)

it has a memory of 16 bits (M0 to M15) (initialized before running)
it supports the following operations

set a register to either 0 or 1 SRxb

loading a form memory to a register LM/Rx

the nand® NRxRyRz puts Rx nand Ry in Rz
during typing, a formula containing more than 16 variables will be
rejected and we will build a mapping firm variable names to
memory location denoted M
translation rules will be of the following form

M, R+ AST term instructions sequence

‘R carries the register to hold the result, initialized to RA
3it is and followed by not (1 nand 1 = 0 and 0 nand b = b nand 0 = 1)

Example 32/33

(1) M, R I Bool true -~ SRA1
(2) M, R |- Bool false -~ SRRO
x € dom(M)
M, R Var x ~ LM(x)R
M,RA - F iS M,RB Fy ~ sy
M, R = And(F;, F,) ~ isjissNRARBRCNRCRCR

M, RA - Fy ~ s; M,RBF Fy sy
M, R - 0r(Fy,Fs) ~ isyissNRARARANRBRBRBNRARBR

(3)

(4)

(5)

true or x1 and x2 or false compiles to SRA1LMORB

NRARARANRBRBRBNRARBRALM1RASRBONRARARANRBRBRB
NRARBRBNRARARCNRCRCRA

Conclusion 33 /33

Just a very fast introduction to compilation
Practice will help concretize!
a stack machine language PFx and its execution
a micro functional language EXPR, its evaluation and its translation
to PFX
Formalization is important and often forgotten by engineers,
that’s an error!

Vocabulary
abstract machine, token, sentence, typing, translation rule,
pattern, action, abstract syntax tree, interpreter, value,
undecidable, type checking, type inference, typeability,
Acronym
LR1, AST, REPL, SOS, SSA

	The structure of a compiler
	Lexing
	Parsing
	Core

