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What is a compiler? 4 / 33

I It is a program transformer from L1 to L2

CompilerSource program
in language LI

Translated program
in language LO

I LO is "more" executable than LI

I Most of the time, a program in L2 is directly executable
I either by a machine (e.g. LO = X64)
I or by an abstract machine1 (e.g. LO = OCaml bytecode)

I Often a compiler is composed of a flow of compilers

L1 L2
compiler1 ...compiler2 Ln+1

compilern

1an abstract machine is a piece of software acting as a machine



Structure of a compiler 5 / 33

I It is a composed of three stages
I front end in charge of recognizing LI (e.g. gcc has C, C++, Go, ...)
I core doing the hard work
I back end in charge of emitting LO (e.g. gcc has X64, ARM, ...)

Core

Front
end
LI

1

Back
end
LO

1

Front
end
LI

2

Back
end
LO

2

Source program
in language LI

1

Translated program
in language LO

1

Source program
in language LI

2

Translated program
in language LO

2

I Several paths are possible



Front end 6 / 33

I It checks whether the program is syntactically correct
I It belongs to the language LI

I It must build an internal representation of the program
I It is an internal data structure of the compiler

⇒ It is highly dependent of the input language
I It is decomposed in two parts
I lexer recognizes tokens in a character stream
I parser recognizes sentences in a token stream

Lexer Parser
token

control

Character
stream

Abstract
Syntax Tree

’1’ ’3’ ’+’ ’x’ ’1’

〈13〉 〈+〉 〈x1〉

next next next
+

13 x1



Core 7 / 33

I Works on internal data structures
I Is in charge of the verification of validity (typing) of the program
I In charge of the main transformation work, for instance
I simplify programs by removing useless elements
I transform function calls
I transform object oriented access

I Relatively usual software
I Functional paradigm is very adapted for this kind of code
I recursive functions for the visiting part
I sum types for representing the various elements
I product types to add information to the various elements
I pattern matching for the recognition of structure
I ...



Back end 8 / 33

I Translates internal data structures in instructions of the target
language

...
movq $1, %rax
; some code to get the value of x1
addq $26, %rax
...

I Implements all optimizations specific to the target
I Complex requiring to master the target machine
I Not in the scope of this introduction...
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Lexical analyzer (a.k.a lexer) 10 / 33

I A lexer is in charge of reading enough characters from an entry
stream to produce a token

I To be efficient it is generally built as an automaton where
I transitions correspond to the received characters
I final state corresponds to the production of the token

0start ADD

INT

VAR

0-9 0-9

+

a-z a-z,0-9

I When reaching a final state, it produces a token (data structure
for the parser)



Building a lexer 11 / 33

I One way to define such an automaton is to define a set of
translation rules

I A translation rule is composed of a pattern and an action
I the pattern is defined using a regular expression specifying the

accepted input
I the action defines what to do in case of accepting (often just

returning the right token)

I For the previous slide example

| ['0'-'9']+ { INT((* input converted in int *)) }
| '+' { ADD }
| ['a'-'z']['a'-'z''0'-'9']* { VAR((* input *)) }

I A Domain Specific Language: OCamllex
I a compiler ocamllex producing OCaml code for the automaton



OCamllex syntax 12 / 33

I File with extension .mll

as is in the result

translated as a function

as is in the result

compiled as an automaton
actions executed

on accepting

{ (* OCaml code: optional prelude *) }
(* useful regular expressions only for regexp part *)
let ident = regexp
let ident = regexp
(* a group of rules *)
rule ident [ident1 ... identn] = parse
| regexp { (* OCaml code *) }
| regexp { (* OCaml code *) }
(* another group of rules *)
and ident [ident1 ... identn] = parse
...
{ (* OCaml code: optional postlude *) }



OCamllex regexp syntax by example 13 / 33

I [' ' '\014' '\t' '\012']+ ⇒ at least one space

I (['\n' '\r'] | "\r\n")

⇒ newline

I [^ '\n' '\r']

⇒ any character except newline

I "//"[^ '\n' '\r']*

⇒ C like line comment

I Suppose
let digit = ['0'-'9']
let letter = ['a'-'z''A'-'Z']
let id_char = (letter | digit | '_')

I letter id_char* as id

⇒ identifiers, id contains the result

I integers

⇒ digit+ as nb

I floating point numbers

⇒
digit* '.' digit* (['e' 'E'] ['+' '-']? digit+)? as nb
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Generated OCaml code 14 / 33

I Each rule name a1 ... an gives a function name taking args
I a1, ... an, the user arguments
I a buffer containing the stream of character of type Lexing.lexbuf

I This function matches the characters in the buffer to execute
the corresponding accepting action when called
I it selects the regexp giving the longest part matched
I in case of equality it selects the first defined

I The standard library module Lexing also provides
I two constructors for buffers: from_channel and from_string
I lexeme buf returning the matched string of buf

I Only one automaton is generated even for several entry points
I the automaton is determinized and minimized
I its code is finally put between the prelude and postlude



An example and the flow 15 / 33

I File formulaLexer.mll

{
type token = EOF | AND | OR | TRUE | FALSE

}
let space = [' ' '\t' '\n']
rule token = parse
| space+ { token lexbuf }
| eof { EOF }
| "and" { AND }
| "or" { OR }
| "true" { TRUE }
| "false" { FALSE }

I ocamllex formulaLexer.mll produces formulaLexer.ml

I It then can be compiled using ocamlc
B it can contain errors if the mll file contained wrong OCaml code
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Which kind of grammar? 17 / 33

I For most reasonable language syntax, regular expressions are
not sufficient

I We must use more powerful grammars but keep efficiency of
parsing

⇒ We use context-free grammars (CFG)
I defined only by production A→ m where A ∈ V and m ∈ (X ∪V )∗

I In this course, we will focus on LR(1) parsing by using Menhir2

I Menhir
I offers a DSL for defining grammars in .mly files
I has a tool compiling a grammar spec. to OCaml code (menhir)

I Menhir follows a flow similar to OCamllex

2http://gallium.inria.fr/~fpottier/menhir

http://gallium.inria.fr/~fpottier/menhir


An example 18 / 33

The token type

Grammar Actions

An entry point with its return type

I File formulaParser.mly

%token AND OR EOF TRUE FALSE
%token <string> IDENT
%start< string > formula
%%
formula: c=disj EOF { c }
disj:
| c=conj OR d=disj { "("^c^" or "^d^")" }
| c=conj { c }
conj:
| s=ident_or_const AND c=conj { "("^s^" and "^c^")" }
| s=ident_or_const { s }
ident_or_const:
| id=IDENT { id }
| TRUE { "true" }
| FALSE { "false" }
%%



Some remarks 19 / 33

I The token type is now generated within the parser
⇒ The lexer does not define it anymore but imports the parser
I Each entry point (%start) gives a parsing function of type

(Lexing.lexbuf -> token) -> Lexing.lexbuf -> string

⇒ The lexer must be given to the parser

let compile file =
try
let input_file = open_in file in
let result = formula token (Lexing.from_channel input_file) in
close_in (input_file);
printf "read %s\n" result

with Sys_error s ->
printf "Can't find file '%s'" file

let () = Arg.parse [] compile ""



The result of parsing 20 / 33

I In general, the result of parsing is a data structure representing
programs called an Abstract Syntax Tree (AST)

I Defined using recursive sum types

type t =
| Var of string
| Bool of bool
| And of t * t
| Or of t * t

I Manipulated by recursive functions

let rec string_of = function
| Var s -> s
| Bool true -> "true"
| Bool false -> "false"
| And(f1,f2) -> "("^(string_of f1)^" and "^(string_of f2)^")"
| Or(f1,f2) -> "("^(string_of f1)^" or "^(string_of f2)^")"



The example revisited 21 / 33

Prelude
%{
open FormulaAst

%}
%token AND OR EOF TRUE FALSE
%token <string> IDENT
%start< FormulaAst.t > formula
%%
formula: c=conj EOF { c }
conj:
| d=disj AND c=conj { And(d,c) }
| d=disj { d }
disj:
| s=ident_or_const OR d=disj { Or(s,d) }
| s=ident_or_const { s }
ident_or_const:
| id=IDENT { Var id }
| TRUE { Bool true }
| FALSE { Bool false }
%%



The new complete flow 22 / 33

Parser

Lexer
token

control

Character
stream

Abstract
Syntax Tree

Lexer

’t’ ’r’ ’u’ ’e’ ’ ’
’a’ ’n’ ’d’ ’ ’ ’x’ ’1’

TRUE AND IDENT("x1")

token token token
And

Bool

true

Var

"x1"

ocamllex menhir

formulaLexer.mll formulaParser.mly

formulaLexer.ml formulaParser.ml

formulaAst.ml
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Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ] [ ] [ ]

false

true false

true true false false



Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ] [ ] [ ]

false

true false

true true false false



Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ] [ ] [ ]

false

true false

true true false false



Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ]

[ ] [ ]

false

true false

true true false false



Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ] [ ] [ ]

false

true false

true true false false



Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ] [ ] [ ]

false

true false

true true false false



Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ] [ ] [ ]

false

true false

true true false false



Evaluation 24 / 33

I One way to execute a program is to use an interpreter
I often called a Read Eval Print Loop

I Consists in producing a value from an AST
I It uses a recursive visit of the AST to synthesize the value
I While descending into the AST, naming information must be

collected
And

Or

Bool

true

Var

"x1"

Or

Var

"x2"

Bool

false

["x1" 7→true;"x2"7→false]

[ ] [ ]

[ ] [ ] [ ] [ ]

false

true false

true true false false



Formalization 25 / 33

I Such visit can be formalized using big step Structural
Operational Semantics
I values are from the boolean algebra B = {T,F} with ∧ and ∨
I T ∧ T = T,F ∧ b = b ∧ F = F,T ∨ b = b ∨ T = T,F ∨ F = F

I an environment function E mapping variable names to values
I dom gives its domain, E(x) gives the value associated to x in E

I judgements of the form E ` AST term ⇒ value

(1) E ` Bool true⇒ T (2) E ` Bool false⇒ F

(3)
x ∈ dom(E)

E ` Var x ⇒ E(x)
(4)
E ` F1 ⇒ b1 E ` F2 ⇒ b2

E ` And(F1,F2)⇒ b1 ∧ b2

(5)
E ` F1 ⇒ b1 E ` F2 ⇒ b2

E ` Or(F1,F2)⇒ b1 ∨ b2



Implementation 26 / 33

open FormulaAst
let eval env formula =
let rec eval_rec = function
| Var s -> List.assoc s env
| Bool true -> true
| Bool false -> false
| And(f1,f2) -> (eval_rec f1) && (eval_rec f2)
| Or(f1,f2) -> (eval_rec f1) || (eval_rec f2)
in
eval_rec formula

I Here, as the environment is constant during the visit, it is made
global to the visting function (eval_rec)

I In implementation, we should take care of errors (x 6∈ dom(E))



Type 27 / 33

I Evaluation can lead to runtime errors
I Typing "approximates" evaluation to detect a maximum of

runtime errors in advance
I the "value" set is simplified and called type set
I a new "value" is created to represent errors ⊥
I operations are defined on this simplified set

I For our example
I all booleans values are approximated by the type bool
I ∧ and ∨ are both transformed in ⊗
I bool ⊗ bool = bool and ⊥⊗ x = x ⊗⊥ = ⊥

I the environment is approximated by a type environment Γ

(1) Γ ` Bool b : bool
(3)

Γ ` F1 : b1 Γ ` F2 : b2

Γ ` And(F1,F2) : b1 ⊗ b2

(2) Γ ` Var x : Γ(x)
(4)

Γ ` F1 : b1 Γ ` F2 : b2

Γ ` Or(F1,F2) : b1 ⊗ b2



Usefulness of types 28 / 33

Subject reduction theorem (safety)

∅ ` P : τ ∧τ 6= ⊥ =⇒ (∅ ` P ⇒ v ∧∅ ` v : τ) ∨ ∅ ` P ∞
=⇒

I Well-typed programs cannot "go wrong" (produce errors)
I Furthermore computing types is much cheaper than evaluating
B In general, Halting and Error discovery are undecidable
I Any typing must rejects correct (but too complicated) programs

⇒ needs a compromise between flexibility and safety
⇒ to achieve safety, runtime checks are often needed

all programs

well typed programs

interesting programs

programs using
heterogenous lists

programs using
unbounded arrays
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More on types 29 / 33

I Type algebra are often much more complex
I more values
I new types during typing...
I specific relation between types (e.g. subtyping)

I Often the developer must add type annotations
I type checking: given Γ, P and τ , is Γ ` P : τ true?
I the simply typed λ-calculus
I syntax: M ::= . . . | λx :τ.M and types τ ::= τ → τ
I typing

x :τ ∈ Γ

Γ ` x : τ

Γ, x :τ ` M : τ ′

Γ ` λx :τ.M : τ → τ ′
Γ ` M1 : τ → τ ′ Γ ` M2 : τ

Γ ` M1M2 : τ ′

I With no annotation, it is Type Inference
I typeability: given P finds Γ and τ such that Γ ` P : τ is true
I much harder



Optimization 30 / 33

I The step containing the most difficult algorithms and heuristics
I It consists in transformation of the AST to reduce certain

consumption (time, memory, energy, ...)
I Can be generic or specific to a target
I For example
I for all b, F ∧ b = F
I so And(Bool false,F ) can be transformed in Bool false

I In real life much more complex!
I taking out of loop code not depending on the loop
I loop unrolling
I propagating constants, inlining small functions
I removing dead code
I transforming variables into StaticSingleAssignment
I tail-call, closure elimination
I ...



Compilation 31 / 33

I Transform each element of the AST to machine operation
I For example, let’s suppose the following machine
I it manipulates only one bit
I it has three registers RA, RB and RC (of one bit)
I it has a memory of 16 bits (M0 to M15) (initialized before running)
I it supports the following operations
I set a register to either 0 or 1 SRxb
I loading a form memory to a register LMiRx
I the nand3 NRxRy Rz puts Rx nand Ry in Rz

I during typing, a formula containing more than 16 variables will be
rejected and we will build a mapping firm variable names to
memory location denotedM

I translation rules will be of the following form

M,R ` AST term  instructions sequence

R carries the register to hold the result, initialized to RA
3it is and followed by not (1 nand 1 = 0 and 0 nand b = b nand 0 = 1)



Example 32 / 33

(1)M,R ` Bool true SR1

(2)M,R ` Bool false SR0

(3)
x ∈ dom(M)

M,R ` Var x  LM(x)R

(4)
M, RA ` F1  is1 M, RB ` F2  is2

M,R ` And(F1,F2) is1is2NRARBRCNRCRCR

(5)
M, RA ` F1  is1 M, RB ` F2  is2

M,R ` Or(F1,F2) is1is2NRARARANRBRBRBNRARBR

I true or x1 and x2 or false compiles to SRA1LM0RB

NRARARANRBRBRBNRARBRALM1RASRB0NRARARANRBRBRB

NRARBRBNRARARCNRCRCRA



Conclusion 33 / 33

I Just a very fast introduction to compilation
I Practice will help concretize!
I a stack machine language PFX and its execution
I a micro functional language EXPR, its evaluation and its translation

to PFX

I Formalization is important and often forgotten by engineers,
that’s an error!

I Vocabulary
I abstract machine, token, sentence, typing, translation rule,

pattern, action, abstract syntax tree, interpreter, value,
undecidable, type checking, type inference, typeability,

I Acronym
I LR1, AST, REPL, SOS, SSA
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