
29/09/2016

Introduction to
languages & logic

ELU 610 – C1
1st semester 2019



ELU610 – Languages & logic 2 / 42

An introduction to. . .
§ mathematical tools for computer science
§ two new programming paradigms
§ compilation and typing
§ tools for knowledge representation



Organization 3 / 42

0. Introduction (C1, now)
1. Regular expressions, automata, formal grammars

§ C2-4, TP1-3
§ Éric Cousin – office D03-014, eric.cousin@imt-atlantique.fr

2. λ-calculus, functional programming, compilation, typing,
OCaml
§ C5-7, TD1-2, TP4-9
§ Fabien Dagnat – office D03-120
§ Jean-Christophe Bach – office D03-124

{fabien.dagnat,jc.bach}@imt-atlantique.fr

3. Logics
§ C8-11, TD3-5, TP10-11
§ Yannis Haralambous – office D03-118,

yannis.haralambous@imt-atlantique.fr

eric.cousin@imt-atlantique.fr
{fabien.dagnat,jc.bach}@imt-atlantique.fr
yannis.haralambous@imt-atlantique.fr


Evaluation 4 / 42

§ Theory
§ each part is evaluated at the end of ELU610, june 6th

§ Practice
§ a stack language compiler written in OCaml
§ 2 members per compiler group
§ not handing (or contributing to) the compiler is eliminatory



Introduction to Languages & logic 5 / 42

Why Languages & logic?
§ what relationship between language and logic?
§ why that content in a lecture?
§ why studying formal systems and abstractions instead of

practical activities?

Today’s lecture: motivations for L&L
+ few formal definitions
+ some terminology



Abstractions vs practical activities 6 / 42

Abstraction Practical activities

Engineer(ing)

§ Playing with (changes of) abstractions is part of engineer’s
core activity

§ Reasonable pedagogical choice



Motivations 7 / 42

§ Complex software systems
§ Critical systems
§ Need of trusted software for trusted systems and services
ñ designing, developing and verifying software

{quality, safety, security} by design

ñ need of tools and methodologies



How to solve a problem? 8 / 42

A problem well stated is on its way to solution
Bergson, XXth

§ What does stated means?
§ What is a well stated problem?
§ Then solving it. . .



Reflection on reflection 9 / 42

§ What tools do we have to state problems?
§ natural language, pictures/drawings, mathematics, programs
§ media (audio – voice, paper – writings, drawings, electronics. . . )

§ How do we state problems?
§ identification
§ selection
§ description (with a sound, a word, a picture, a formula, a program,

etc.)



Identifying 10 / 42

§ Recognize, invent
§ with respect to previous identical experiences
§ with respect to previous close experiences

§ Similarities, metaphors, links, comparisons
§ Exact, approximate, complement (lack of), . . .
§ An invention from scratch is rare, . . . (is it even possible?)



Naming 11 / 42

In the beginning was the Word
John the Apostle, Ist (?)

Mal nommer les choses, c’est ajouter au malheur du monde
Albert Camus

§ The importance of choosing right names
§ ambiguities, vagueness
§ method overriding/overloading



Selecting 12 / 42

§ Among the identified things, which one to keep?
§ all?
§ the useful one? Useful relatively to an intent (the problem to solve)

§ Ockham’s razor
Entities must not be multiplied beyond necessity.
Plurality should not be posited without necessity.

William of Ockham, XIVth

An usual interpretation is: “when you have two competing
theories that make exactly the same predictions, the simpler one
is the better”



Describing/Representing 13 / 42

To describe an idea in order to:
§ Transmit (in time, to others, to oneself)
§ Handle, work with
§ To interpret, with risks like:

§ incomprehension. . . easy; “I’m able to detect when I do not
understand!”
§ lost languages or writings

§ misunderstanding. . . “I understood something, but not the intent of
the transmitter” hard to detect. . . but a factor of innovation



Remarks 14 / 42

Our ability to identify, to select and to name depends on our
toolbox of descriptions

(Scientific) progress is a consequence of this virtuous principle:
We are like dwarfs on the shoulders of giants, so that we can
see more than they, and things at a greater distance, not by
virtue of any sharpness of sight on our part, or any physical
distinction, but because we are carried high and raised up by
their giant size

Bernard de Chartres, XIIth



Describing how? 15 / 42

§ Sounds
§ problems: trace, memory, transmission, sophisms (validity,

correctness)
§ Writings

§ problems: sophisms (validity, correctness)
§ Graphical

§ problems: validity (interpretation/semantics)
§ Mathematics

§ problems: accessibility, calculability/completeness
§ Computers

§ problems: validity – 4-colors theorem (?), size of problems,
calculability/completeness



Modeling 16 / 42

§ Modeling
§ abstracting a problem, stating it. . .
§ simplifying, hiding details

§ What for?
§ solving problems (of course!)
§ helping to think
§ mastering complexity
§ validating
§ verifying

§ How to. . .
§ . . . express a model / represent concepts?

ñ with languages

§ . . . how to “solve” a problem with models? (how to reason?)

ñ with logics



Modeling 16 / 42

§ Modeling
§ abstracting a problem, stating it. . .
§ simplifying, hiding details

§ What for?
§ solving problems (of course!)
§ helping to think
§ mastering complexity
§ validating
§ verifying

§ How to. . .
§ . . . express a model / represent concepts?
ñ with languages
§ . . . how to “solve” a problem with models? (how to reason?)
ñ with logics



Modeling languages 17 / 42

§ Mathematics
§ rich, precise, rigorous
§ possess powerful transformation tools
§ ex.: from 5` x “ 8 one reduce x “ 8´ 5, hence x “ 3!

§ Maps, pictures
§ rich, abstract
§ “One picture is worth ten thousand words”
§ transformations (3D algorithms, drawing constraints)

§ Simulations
§ models (french maquettes), prototypes
§ actors, virtual reality, . . .

§ . . .



Languages as mechanisms that help thinking 18 / 42

§ Modeling
§ choose a good language (to be able to express concepts)
§ symbols, graphical notations
§ mechanisms, operations

§ Example in math, using “algebra” (no verb!?)
A square has a surface a. What is the length of its side?

§ x is the length of the side
§ x is such that x2 “ a
§ . . . do not forget x ě 0!

§ Defining a language needs time



Example : math notations in history [Nic94] 19 / 42

Authors ` “ x 2x2 “ 3x ` 5

Chuquet (XVth) p 1, 2, 3 22 egaulx a 31 p 5

Stifel (XVIth) ` x , z, a 2z acquatus 3x ` 5

Cardan (XVIth) p co, ce, cu 2 ce equale a 3 co p 5

Bombelli (XVIth) p 1, 2, 3 2
2 equale a 1

3 p 5

Stevin (XVIth) ` 1 , 2 , 3 2 2 aequatus 3 1 ` 5

Viète (late XVIth) ` A,Aq,Ac 2 in Aq aequatur 3 in A `

5 plano

Neper (XVIIth) ` ““ R,Q,C 2Q ““ 3R ` 5

Harriot (1631) ` ““ a, aa, aaa 2aa ““ 3a` 5p

Hérigone (1634) ` 2{2 a, a2, a3 2a2 2{2 3a` 5p

Descartes (1637) ` 8 z, zz, z3 2zz 8 3z ` 5



Good modeling language? Criteria 20 / 42

§ No ambiguities (2/2, 1, 2, etc.)
§ Generalizable (1 to n unknowns)
§ Simple (5 plano is redundant)
§ Economical (short)
§ Ease communication/easy to learn
Cognitive gap: naming what is known is natural; naming the
unknown, less. . . !



Language 21 / 42

Everything is about language
§ to express
§ to reason about

Which language to use?
§ universal language? ñ universal tool
§ specialized languages? ñ dedicated tools
§ natural languages? ñ tools?



Natural language 22 / 42

Why not using natural (not formal) language?
§ ambiguities
§ under-specification (understatement, implicit)
§ over-specification (redundancy)
§ noise
§ easy to have contradiction
§ difficult to have the right level of specification

ñ difficult to reason with natural languages



Specialized languages 23 / 42

DSL: Domain Specific Language
§ special purpose languages. . .
§ on purpose language limitations (Controlled Natural Language)
ñ Specialized tools for reasoning, transforming, proving, . . .



Formal language 24 / 42

§ removing/avoiding ambiguities
§ automating reasoning (partially)
ñ useful for software verification
§ formality with 3 levels of correctness:

1. 2x` “ 8´ (syntactic)
2. 2x “ 10 ñ x “ 10´ 2 (transformation)
3. 2x “ 10 ñ x “ 10{2 “ 5 (intention)

Levels 1 and 2 can be automated.
Level 3 requires interpretation, and some kind of agreement
(consensus); is the problem well stated?

[A proof] is a social process that determines whether mathe-
maticians feel confident about a theorem [DLP78]



Defining a language 25 / 42

§ Language = syntax + semantics
§ Syntax

§ we have tools to describe syntax without any interpretation:
ñ formal grammars
§ writing programs which recognize syntactically correct programs
ñ compilers

§ Semantics
§ what happens when executing
§ two languages can have the same syntax but different semantics
§ interpretation
§ set of rules, transformations and constraints attached to syntax

Note: reasoning and deduction are a purely syntactical process
(ñ useful for automation. . . )



Defining a language (teaser of next lecture) 26 / 42

§ Formal definitions
§ language, alphabet, symbols, terms, . . .
§ focus of CS on finitely generated languages

§ formal language theory (study and classification of languages)
[ALSU06, HMU06]
§ focus on how to define languages and (efficiently) recognize terms

see http://en.wikipedia.org/wiki/Formal_language

§ . . . and many other interesting language-related things
ñ Do not miss Éric Cousin’s lecture! It is mandatory to
understand how we work with languages and compilation in CS

http://en.wikipedia.org/wiki/Formal_language


Defining a syntax (another teaser of next lecture) 27 / 42

§ A syntax? Two syntaxes: a concrete one and an abstract one
§ Concrete syntax

§ defined by a grammar, using BNF/EBNF
see http://en.wikipedia.org/wiki/Backus-Naur_Form

§ focus on interaction with the user
§ must be readable, efficient, . . .
§ must solve the ambiguities, priorities, associativity, . . .

see http://www.infoq.com/presentations/Language-Design

§ Abstract syntax
§ the essential content of a sentence
§ aimed at being used by any tool manipulating terms
§ defined by a signature (using eventually a BNF/EBNF grammar)

§ Understanding syntaxes is necessary to build a compiler
ñ Do not miss Éric Cousin’s next lecture

http://en.wikipedia.org/wiki/Backus-Naur_Form
http://www.infoq.com/presentations/Language-Design


Syntax and semantics 28 / 42

We talked a lot about syntax, few about semantics.
Where is the semantics?
§ in your mind first (we are interpreters)
§ in the set of rules, transformations, constraints that we attach

to a syntax (ex. ` is associative and commutative)
§ in mappings we make to a well known world with its own

syntax and semantics (ex. mathematics)



Giving meaning 29 / 42

§ There is mainly three ways of defining the semantics of a term
1. Axiomatic semantics: some logical assertions states properties of

terms
2. Denotational semantics: each term is mapped to an object of a

known space
3. Operational semantics: how computation behaves (the sequence

of states)

§ Not the only ones
see http://en.wikipedia.org/wiki/Semantics_(computer_science)

http://en.wikipedia.org/wiki/Semantics_(computer_science)


Axiomatic semantics 30 / 42

§ Defined by systems of equations describing the effect of each
syntactic construction to logical assertions

§ Gives a macroscopic vision of the meaning (generally partial)
§ Used to study properties of: consistency, completeness,

compositionality, . . .
§ The most well-known, Hoare triple

§ tPreuTtPostu means if Pre is true before the execution of T and
T terminates then Post is true after its execution

see http://en.wikipedia.org/wiki/Hoare_logic

http://en.wikipedia.org/wiki/Hoare_logic


Denotational semantics 31 / 42

§ Defined by a projection in a (known) mathematical space (sets,
universal algebra, domain, category, . . . )

§ Gives an abstract vision of the meaning
§ Used to study meta-theory: equivalence of terms, fixed-point

theory, . . .
§ Often given by a projection called an interpretation and

denoted J.K or Ip.q
§ Often requires compositionality, the meaning of a term is the

composition of the meaning of its subterms
see http://en.wikipedia.org/wiki/Denotational_semantics

http://en.wikipedia.org/wiki/Denotational_semantics


Operational semantics 32 / 42

§ Each term either reduce to another (smaller) term or is a value
§ Defined by computation rules (rewriting)
§ Can be small-step or big-step
§ Gives a microscopic vision of the meaning
§ Used to study properties of: termination, non-determinism, . . .
§ The one we will use
§ More precisely, we will use transitions systems (a.k.a.

reduction)
see http://en.wikipedia.org/wiki/Operational_semantics

http://en.wikipedia.org/wiki/Operational_semantics


Some additional vocabulary and remarks 33 / 42

B The following slides might be a bit shuffled

Do you know those words? Do you know they meaning?
§ verification, validation
§ term, metaterm
§ variable, metavariable
§ transition system



Verification and validation (V&V) 34 / 42

An interpretation. . .
Verification checking that the rules of the formal systems are

properly used. Internal to a model, a description
system and its use.

Validation comparing two (2) models to check that the one to
be validated gives the same answer that the one of
reference.



Terms as trees 35 / 42

§ Terms are trees where each constructor is a node and each of
its direct sub-terms is a child

ˆ

`

`

2 1

¨

1 3

¨

5 7 7 8



Naming 36 / 42

§ We use names to
§ represent a set of terms: metavariable; cpM1,M2q, E1 ˆ p3` E2q

§ represent an unknown part of a term: variable; cpxq, x ˆ y
§ Metavariables are not part of the syntax and used only inside

metaterms
§ a metaterm is a set of term
§ useful to manipulate or to describe properties of sets of terms

§ Variables are part of the term
§ syntax must be extended (see next slide)
§ a variable may occur several times within a term
§ the meaning of a variable is given by replacing all its occurrences

by a term
§ a term T containing x can be viewed as a function from term to

term



Variables 37 / 42

§ Terms may also contain variables from a denumerable set X
§ we suppose ΣX X “ H and the arity of variables is 0

§ TΣYX is denoted TΣrX s
§ A term without variable is a ground term (or closed term)
§ Variables are leafs (as nullary constructors)

ˆ

`

2 ˆ

x y

x

§ The meaning of a variable is given by substitutions



Transition system 38 / 42

A transitions system is a pair pS,Ñq of a set S (of states) and a
binary relation Ñ of S (Ñ ĂS ˆ S).

A pair pp, qq of Ñ is noted infix p Ñ q and we speak of a
transition from state p to state q.

programs Ø transition systems



More terminology 39 / 42

This introduction could have much more vocabulary. Some will
(should) be in the next lectures
§ normal term, normal form
§ trace, reduction sequence
§ (non-)determinism
§ strong normalization
§ weakly normalizing
§ confluence
§ reflexive transitive closure
§ . . .
But we are humans. . . If you hear strange (unknown) words
which are not defined during the lectures, please tell us.



Conclusion 40 / 42

§ an introduction to motivate ELU610
§ now, you should understand why there is a lecture combining

language and logic
§ few intuitions before more formal lectures and definitions
§ don’t be scary: there are also practical and concrete parts

(programming!) to show you that it is useful



What’s next? 41 / 42

Éric Cousin Regular expressions, automata, formal grammars
JC Bach λ-calculus, introduction to functional programming,

compilation and typing (OCaml language)
. . . with Fabien Dagnat

Yannis Haralambous Variation about logics

B Important note: if you do not understand something or if you
disagree with us, please say it and ask your questions. We won’t
bite you, and we follow Crocker’s rules1.
We cannot answer the questions you do not ask. . .

1http://sl4.org/crocker.html

http://sl4.org/crocker.html


References I 42 / 42

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition).
Addison Wesley, August 2006.

Richard A DeMillo, Richard J Lipton, and Alan J Perlis.
Social Processes and Proofs of Theorems and Programs (Revised Version).
1978.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages, and Computation (3rd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

Jean-Marie Nicolle.
Histoire des méthodes scientifiques.
Bréal, 1994.


