IMT Atlantique
Bretagne-Pays de la Loire École Mines-Télécom

The λ-calculus

Mathematical modeling

of functions

Fabien Dagnat
ELU 610 - C5
$1^{\text {st }}$ semester 2019

Plan

$2 / 26$

(1) The syntactic landscape

(2) Computing with syntactic objects
(3) Conclusion

- A formal language proposed by Alonzo Church in the 1930s to model the notion of function
- http://en.wikipedia.org/wiki/Lambda_calculus
- We will use it to
- illustrate the notion of formal language
- understand fundamentals of formal reasoning
- introduce the functional paradigm

René Lalement
Logique Réduction Résolution
ERI Masson, 1990

Book translated in english Computation as logic, Prentice-Hall in 1993, ISBN 9780137700097

Progress

2 Computing with syntactic objects

The syntax of the λ-calculus

The set $\Lambda_{\mathcal{X}}$ of the terms defined by

- variables x, y, \ldots from a denumerable set \mathcal{X}
\square applications $\left(T_{1} T_{2}\right)$ of a term T_{1} (the function) to a term T_{2} (the argument)
$>$ functions $(\lambda x . T)$ of a variable x (the parameter) and a term T (the body)
- BNF: $T::=x|(T T)|(\lambda x . T)$
- Parenthesis may be omitted
\Rightarrow outer: $\left(T_{1} T_{2}\right)=T_{1} T_{2}$ and $(\lambda x . T)=\lambda x . T$
- application is left associative: $T_{1} T_{2} T_{3}=\left(T_{1} T_{2}\right) T_{3}$
$>\lambda$ is right associative: $\lambda x . \lambda y . T=\lambda x .(\lambda y . T)$ and

$$
\lambda x . T_{1} T_{2}=\lambda x .\left(T_{1} T_{2}\right)
$$

- Some well-known λ-terms

$$
\lambda x \cdot x=\mathbf{I} \quad \lambda x \cdot \lambda y \cdot x=\mathbf{K} \quad \lambda x \cdot \lambda y \cdot \lambda z \cdot((x z)(y z))=\mathbf{S}
$$

Abstract syntax

- $\Lambda_{\mathcal{X}}=T_{\{\varrho, \lambda\}}[\mathcal{X}]$ with
- @ is the only constructor and $\operatorname{ar}(\mathbb{C})=2$
$\Rightarrow \lambda$ is the only binder and $\operatorname{ar}(\lambda)=1$
Terms are trees
- variables are leaves
- constructors and binders are nodes
$>$ ex: $(\lambda x . T)\left(T_{1} T_{2}\right)$

Variables, scope and binding

Variables, scope and binding

Variables, scope and binding

7 / 26

Variables, scope and binding

Free and bound variables

- A free variable is defined outside the term
- a kind of global variable (for the term)
its name is essential and cannot be modified
- $\lambda x . y$ is different from $\lambda x . z$
- A bound variable is intern to the term
- a kind of local variable (for the term)
- its name can be modified (the defining occurrence and all its depending bound occurrences)
- $\lambda x . x$ is identical to $\lambda y . y$
$>$ known as α-conversion (see later for the mathematical definition)
- the name of a bound variable has no importance, only the link to its binder ${ }^{1}$
\Rightarrow A term with free variables is open
- A term with no free variables is closed (a.k.a. combinators)
${ }^{1}$ there exists notations without names, see for example [Bou08]

Reminder

One can define a function f on \mathbb{N} recursively by

1. defining $f(0)$
2. defining $f(n+1)$ in terms of $f(n)$
for example, factorial
3. $0!=1$
4. $(n+1)!=(n+1) n!$

One can prove a property P on \mathbb{N} by

1. proving $P(0)$
2. proving that if $P(n)$ holds, $P(n+1)$ is true
for example, if $P(n)$ is $0+1+\cdots+n=\frac{n(n+1)}{2}$
3. $0=0$
4. $0+1+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=(n+1)\left(\frac{n}{2}+1\right)$

$$
=\frac{(n+1)(n+2)}{2}
$$

- Variants: starting at k or $P(0), \ldots, P(n) \Rightarrow P(n+1)$
- (Structural) induction is a method of definition or proof on the set of terms $T_{\Sigma}[\mathcal{X}]$
\Rightarrow One can define a function f on $\Lambda_{\mathcal{X}}$ inductively by

1. defining f on \mathcal{X} (leaves)
2. defining $f\left(T_{1} T_{2}\right)$ in terms of $f\left(T_{1}\right)$ and $f\left(T_{2}\right)$
3. defining $f(\lambda x . T)$ in terms of $f(T)$

- For example, the set of free variables $F V$ is defined by

1. $F V(x)=\{x\}$
2. $F V\left(T_{1} T_{2}\right)=F V\left(T_{1}\right) \cup F V\left(T_{2}\right)$
3. $F V(\lambda x . T)=F V(T) \backslash\{x\}$
\downarrow For example, the size of a λ-term is defined by
4. $\operatorname{size}(x)=1$
5. $\operatorname{size}\left(T_{1} T_{2}\right)=\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)+1$
6. $\operatorname{size}(\lambda x . T)=\operatorname{size}(T)+1$

- One can prove a property P on $\Lambda_{\mathcal{X}}$ inductively by

1. proving P on \mathcal{X}
2. proving $P\left(T_{1} T_{2}\right)$ supposing $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true
3. proving $P(\lambda x . T)$ supposing $P(T)$ is true
\Rightarrow Prove $\forall T \in \Lambda_{\mathcal{X}}, \operatorname{card}(F V(T)) \leq \operatorname{size}(T)$

- One can prove a property P on $\Lambda_{\mathcal{X}}$ inductively by

1. proving P on \mathcal{X}
2. proving $P\left(T_{1} T_{2}\right)$ supposing $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true
3. proving $P(\lambda x . T)$ supposing $P(T)$ is true
\Rightarrow Prove $\forall T \in \Lambda_{\mathcal{X}}, \operatorname{card}(F V(T)) \leq \operatorname{size}(T)$
4. $\operatorname{card}(F V(x))=\operatorname{card}(\{x\})=1=\operatorname{size}(x)$

Induction II

\Rightarrow One can prove a property P on $\Lambda_{\mathcal{X}}$ inductively by

1. proving P on \mathcal{X}
2. proving $P\left(T_{1} T_{2}\right)$ supposing $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true
3. proving $P(\lambda x . T)$ supposing $P(T)$ is true
\Rightarrow Prove $\forall T \in \Lambda_{\mathcal{X}}, \operatorname{card}(F V(T)) \leq \operatorname{size}(T)$
4. $\operatorname{card}(F V(x))=\operatorname{card}(\{x\})=1=\operatorname{size}(x)$
5. let's suppose $\operatorname{card}\left(F V\left(T_{i}\right)\right) \leq \operatorname{size}\left(T_{i}\right)$ for i in $\{1,2\}(\mathrm{IH})$

Induction II

One can prove a property P on $\Lambda_{\mathcal{X}}$ inductively by

1. proving P on \mathcal{X}
2. proving $P\left(T_{1} T_{2}\right)$ supposing $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true
3. proving $P(\lambda x . T)$ supposing $P(T)$ is true

- Prove $\forall T \in \Lambda_{\mathcal{X}}, \operatorname{card}(F V(T)) \leq \operatorname{size}(T)$

1. $\operatorname{card}(F V(x))=\operatorname{card}(\{x\})=1=\operatorname{size}(x)$
2. let's suppose $\operatorname{card}\left(F V\left(T_{i}\right)\right) \leq \operatorname{size}\left(T_{i}\right)$ for i in $\{1,2\}$ (IH)

$$
\begin{array}{rlr}
\operatorname{card}\left(F V\left(T_{1} T_{2}\right)\right) & =\operatorname{card}\left(F V\left(T_{1}\right) \cup F V\left(T_{2}\right)\right) & \text { def of } F V \\
& \leq \operatorname{card}\left(F V\left(T_{1}\right)\right)+\operatorname{card}\left(F V\left(T_{2}\right)\right) & \text { prop of } \operatorname{card} \\
& \leq \operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right) & \mathrm{IH} \\
& \leq \operatorname{size}\left(T_{1} T_{2}\right) & \\
\text { def of size }
\end{array}
$$

Induction II

One can prove a property P on $\Lambda_{\mathcal{X}}$ inductively by

1. proving P on \mathcal{X}
2. proving $P\left(T_{1} T_{2}\right)$ supposing $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true
3. proving $P(\lambda x . T)$ supposing $P(T)$ is true

Prove $\forall T \in \Lambda_{\mathcal{X}}, \operatorname{card}(F V(T)) \leq \operatorname{size}(T)$

1. $\operatorname{card}(F V(x))=\operatorname{card}(\{x\})=1=\operatorname{size}(x)$
2. let's suppose $\operatorname{card}\left(F V\left(T_{i}\right)\right) \leq \operatorname{size}\left(T_{i}\right)$ for i in $\{1,2\}$ (IH)

$$
\begin{aligned}
\operatorname{card}\left(F V\left(T_{1} T_{2}\right)\right) & =\operatorname{card}\left(F V\left(T_{1}\right) \cup F V\left(T_{2}\right)\right) \\
& \leq \operatorname{card}\left(F V\left(T_{1}\right)\right)+\operatorname{card}\left(F V\left(T_{2}\right)\right) \\
& \leq \operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right) \\
& \leq \operatorname{size}\left(T_{1} T_{2}\right)
\end{aligned}
$$

3. let's suppose $\operatorname{card}(F V(T)) \leq \operatorname{size}(T)$ (IH)

Induction II

$11 / 26$
One can prove a property P on $\Lambda_{\mathcal{X}}$ inductively by

1. proving P on \mathcal{X}
2. proving $P\left(T_{1} T_{2}\right)$ supposing $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true
3. proving $P(\lambda x . T)$ supposing $P(T)$ is true

Prove $\forall T \in \Lambda_{\mathcal{X}}, \operatorname{card}(F V(T)) \leq \operatorname{size}(T)$

1. $\operatorname{card}(F V(x))=\operatorname{card}(\{x\})=1=\operatorname{size}(x)$
2. let's suppose $\operatorname{card}\left(F V\left(T_{i}\right)\right) \leq \operatorname{size}\left(T_{i}\right)$ for i in $\{1,2\}$ (IH)

$$
\begin{aligned}
\operatorname{card}\left(F V\left(T_{1} T_{2}\right)\right) & =\operatorname{card}\left(F V\left(T_{1}\right) \cup F V\left(T_{2}\right)\right) \\
& \leq \operatorname{card}\left(F V\left(T_{1}\right)\right)+\operatorname{card}\left(F V\left(T_{2}\right)\right) \\
& \leq \operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right) \\
& \leq \operatorname{size}\left(T_{1} T_{2}\right)
\end{aligned}
$$

3. let's suppose $\operatorname{card}(F V(T)) \leq \operatorname{size}(T)$ (IH)

$$
\begin{aligned}
\operatorname{card}(F V(\lambda x . T)) & =\operatorname{card}(F V(T) \backslash\{x\}) \\
& \leq \operatorname{card}(F V(T)) \\
& \leq \operatorname{size}(T) \\
& \leq \operatorname{size}(\lambda x . T)
\end{aligned}
$$

Substitutions

\Rightarrow Giving a meaning to a free variable is done by substitution

- Substitution is a function associating a term to
- a variable (the substituted variable) and
- two terms (the replacement term and the term on which substitution operates)
- $\left[x \mapsto T_{1}\right] T_{2}$ is the term defined by replacing all free occurrences of x within T_{2} by T_{1}

Substitutions

- Giving a meaning to a free variable is done by substitution
- Substitution is a function associating a term to
- a variable (the substituted variable) and
- two terms (the replacement term and the term on which substitution operates)
- $\left[x \mapsto T_{1}\right] T_{2}$ is the term defined by replacing all free occurrences of x within T_{2} by T_{1}

Substitutions

- Giving a meaning to a free variable is done by substitution
- Substitution is a function associating a term to
- a variable (the substituted variable) and
- two terms (the replacement term and the term on which substitution operates)
- $\left[x \mapsto T_{1}\right] T_{2}$ is the term defined by replacing all free occurrences of x within T_{2} by T_{1}

Substitutions

- Giving a meaning to a free variable is done by substitution
- Substitution is a function associating a term to
- a variable (the substituted variable) and
- two terms (the replacement term and the term on which substitution operates)
- $\left[x \mapsto T_{1}\right] T_{2}$ is the term defined by replacing all free occurrences of x within T_{2} by T_{1}

- Defined inductively

$$
\left\{\begin{array}{ll}
{[x \mapsto T] x} & =T \\
{[x \mapsto T] y} & =y \\
{[x \mapsto T] T_{1} T_{2}} & =[x \mapsto T] T_{1}[x \mapsto T] T_{2} \\
{[x \mapsto T] \lambda y . T^{\prime}} & =\lambda y \cdot[x \mapsto T] T^{\prime}
\end{array} \text { if } x \neq y, y \notin F V(T)\right.
$$

the last condition prevent captures of a free y in T

- The definition is incomplete e.g. $[x \mapsto T] \lambda x . T^{\prime},[x \mapsto y] \lambda y . T$ α-conversion (a.k.a. α-equivalence) is defined by $\lambda x \cdot T={ }_{\alpha} \lambda y \cdot[x \mapsto y] T \quad$ if $y \notin F V(T)$ (freshness condition)
$>$ The definition of substitution is complete modulo renaming
- if $x=y$ or $y \in F V(M)$, we rename the bound y
\downarrow We always work on $\Lambda_{\mathcal{X}} /={ }_{\alpha}$ (modulo renaming)

$$
\begin{aligned}
& \begin{cases}\text { (1) }[x \mapsto T] x=T & \\
\text { (2) }[x \mapsto T] y=y & \text { if } x \neq y \\
\text { (3) }[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2} \\
\text { (4) }[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime} \\
\text { (a) } \lambda x \cdot T=\lambda y \cdot[x \mapsto y] T & \text { if } x \neq y \text { and } y \notin F V(T)\end{cases} \\
& {[Z \mapsto \lambda x \cdot x y] \lambda z \cdot x(\lambda y \cdot z y)=}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{cases}\text { (1) }[x \mapsto T] x=T \\
\text { (2) }[x \mapsto T] y=y & \\
\text { (3) }[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2} & \text { if } x \neq y \\
\text { (4) }[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime}\end{cases} \\
& \begin{array}{ll}
\text { if } x \neq y \text { and } y \notin F V(T) \\
\text { (a) } \lambda x \cdot T=\lambda y \cdot[x \mapsto y] T & \text { if } y \notin F V(T)
\end{array} \\
& {[z \mapsto \lambda x \cdot x y] \lambda z \cdot x(\lambda y \cdot z y)=} \\
& \text { (3) } \quad=[z \mapsto \lambda x \cdot x y] \lambda z \cdot x([z \mapsto \lambda x \cdot x y] \lambda y \cdot z y)
\end{aligned}
$$

An example

14 / 26

$$
\begin{cases}\text { (1) }[x \mapsto T] x=T & \\ \text { (2) }[x \mapsto T] y=y & \text { if } x \neq y \\ \text { (3) }[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2} & \text { if } x \neq y \text { and } y \notin F V(T) \\ \text { (4) }[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime} & \text { if } y \notin F V(T) \\ \text { (a) } \lambda x \cdot T=\lambda y \cdot[x \mapsto y] T & \end{cases}
$$

$[z \mapsto \lambda x . x y] \lambda z . x(\lambda y . z y)=$
(3) $\quad=[z \mapsto \lambda x \cdot x y] \lambda z \cdot x([z \mapsto \lambda x \cdot x y] \lambda y . z y)$
${ }_{(\alpha)(\alpha)}=[z \mapsto \lambda x \cdot x y](\lambda t \cdot[z \mapsto t] x)([z \mapsto \lambda x \cdot x y](\lambda u \cdot[y \mapsto u] z y))$

An example

$14 / 26$

$$
\begin{cases}\text { (1) }[x \mapsto T] x=T & \\ \text { (2) }[x \mapsto T] y=y & \text { if } x \neq y \\ \text { (3) }[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2} & \\ \text { (4) }[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime} & \text { if } x \neq y \text { and } y \notin F V(T) \\ \text { (a) } \lambda x \cdot T=\lambda y \cdot[x \mapsto y] T & \text { if } y \notin F V(T)\end{cases}
$$

$[z \mapsto \lambda x . x y] \lambda z . x(\lambda y . z y)=$
(3) $\quad=[z \mapsto \lambda x \cdot x y] \lambda z \cdot x([z \mapsto \lambda x \cdot x y] \lambda y . z y)$
${ }_{(\alpha)(\alpha)}=[z \mapsto \lambda x \cdot x y](\lambda t \cdot[z \mapsto t] x)([z \mapsto \lambda x \cdot x y](\lambda u \cdot[y \mapsto u] z y))$
${ }_{(2)(3,2+1)}=[z \mapsto \lambda x \cdot x y] \lambda t \cdot x([z \mapsto \lambda x \cdot x y] \lambda u \cdot z u)$

An example

$14 / 26$

$$
\begin{cases}\text { (1) }[x \mapsto T] x=T & \\ \text { (2) }[x \mapsto T] y=y & \text { if } x \neq y \\ \text { (3) }[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2} & \\ \text { (4) }[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime} & \text { if } x \neq y \text { and } y \notin F V(T) \\ \text { (} \alpha) \lambda x \cdot T=\lambda y \cdot[x \mapsto y] T & \text { if } y \notin F V(T)\end{cases}
$$

$[z \mapsto \lambda x . x y] \lambda z . x(\lambda y . z y)=$
(3) $\quad=[z \mapsto \lambda x \cdot x y] \lambda z \cdot x([z \mapsto \lambda x \cdot x y] \lambda y . z y)$
${ }_{(\alpha)(\alpha)}=[z \mapsto \lambda x \cdot x y](\lambda t \cdot[z \mapsto t] x)([z \mapsto \lambda x \cdot x y](\lambda u \cdot[y \mapsto u] z y))$
${ }_{(2)(3,2+1)}=[z \mapsto \lambda x \cdot x y] \lambda t \cdot x([z \mapsto \lambda x \cdot x y] \lambda u \cdot z u)$
(4)(4) $\quad=\lambda t \cdot[z \mapsto \lambda x \cdot x y] x(\lambda u \cdot[z \mapsto \lambda x \cdot x y] z u)$

An example

$14 / 26$

$$
\begin{cases}\text { (1) }[x \mapsto T] x=T & \\ \text { (2) }[x \mapsto T] y=y & \text { if } x \neq y \\ \text { (3) }[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2} & \\ \text { (4) }[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime} & \text { if } x \neq y \text { and } y \notin F V(T) \\ \text { (a) } \lambda x \cdot T=\lambda y \cdot[x \mapsto y] T & \text { if } y \notin F V(T)\end{cases}
$$

$$
[z \mapsto \lambda x \cdot x y] \lambda z . x(\lambda y . z y)=
$$

$$
\text { (3) } \quad=[z \mapsto \lambda x \cdot x y] \lambda z \cdot x([z \mapsto \lambda x \cdot x y] \lambda y \cdot z y)
$$

$$
(\alpha)(\alpha)=[z \mapsto \lambda x \cdot x y](\lambda t \cdot[z \mapsto t] x)([z \mapsto \lambda x \cdot x y](\lambda u \cdot[y \mapsto u] z y))
$$

$$
(2)(3,2+1)=[z \mapsto \lambda x \cdot x y] \lambda t \cdot x([z \mapsto \lambda x \cdot x y] \lambda u \cdot z u)
$$

$$
\text { (4)(4) } \quad=\lambda t \cdot[z \mapsto \lambda x \cdot x y] x(\lambda u \cdot[z \mapsto \lambda x \cdot x y] z u)
$$

$$
(2)(3,1+2)=\lambda t \cdot x(\lambda u \cdot(\lambda x \cdot x y) u)
$$

An example

$14 / 26$

$$
\begin{cases}\text { (1) }[x \mapsto T] x=T & \text { if } x \neq y \\ \text { (2) }[x \mapsto T] y=y & \text { if } x \neq y \text { and } y \notin F V(T) \\ \text { (3) }[x \mapsto T] T_{1} T_{2}=[x \mapsto T] T_{1}[x \mapsto T] T_{2} & \\ \text { (4) }[x \mapsto T] \lambda y \cdot T^{\prime}=\lambda y \cdot[x \mapsto T] T^{\prime} & \text { if } y \notin F V(T)\end{cases}
$$

$$
[z \mapsto \lambda x \cdot x y] \lambda z \cdot x(\lambda y \cdot z y)=
$$

$$
\text { (3) } \quad=[z \mapsto \lambda x \cdot x y] \lambda z \cdot x([z \mapsto \lambda x \cdot x y] \lambda y \cdot z y)
$$

$$
(\alpha)(\alpha)=[z \mapsto \lambda x \cdot x y](\lambda t \cdot[z \mapsto t] x)([z \mapsto \lambda x \cdot x y](\lambda u \cdot[y \mapsto u] z y))
$$

$$
(2)(3,2+1)=[z \mapsto \lambda x \cdot x y] \lambda t \cdot x([z \mapsto \lambda x \cdot x y] \lambda u \cdot z u)
$$

$$
\text { (4)(4) } \quad=\lambda t \cdot[z \mapsto \lambda x \cdot x y] x(\lambda u \cdot[z \mapsto \lambda x \cdot x y] z u)
$$

$$
(2)(3,1+2)=\lambda t \cdot x(\lambda u \cdot(\lambda x \cdot x y) u)
$$

- Everyone should be comfortable with such rewritings...

Progress

$15 / 26$

(1) The syntactic landscape

2 Computing with syntactic objects
(3) Conclusion

- The usual function call can be modeled by

$$
\underbrace{\left(\lambda x \cdot T_{1}\right) T_{2}}_{\text {(1) (2) }} \rightarrow \underbrace{\left[x \mapsto T_{2}\right] T_{1}}_{\text {(3) }}
$$

where (1) is the function, (2) the argument and (3) the result

- For example $\mathbf{I I}=\lambda x \cdot x \lambda x \cdot x \rightarrow[x \mapsto \lambda x \cdot x] x=\lambda x \cdot x=1$
- This rule is called β-reduction (def later)
- It can be applied anywhere within a term
- A location in a term where it can be applied is called a β-redex

Judgment, Inference Rule and Derivation

- A judgment is a logical assertion, here ${ }^{2}:$ Term \rightarrow OtherTerm
- An inference rule is a set of judgments J_{1}, \ldots, J_{n}, J such that $J_{1} \wedge \ldots \wedge J_{n} \Rightarrow J$
J_{1}, \ldots, J_{n} are the premises, J is the conclusion
- written

- An axiom is an inference rule with no premise
- A derivation is a tree of such rules where the leaves are axioms

see http://en.wikipedia.org/wiki/Inference_rule
${ }^{2}$ There exists various other forms of judgment

$$
\text { (1) }\left(\lambda x . T_{1}\right) T_{2} \rightarrow\left[x \mapsto T_{2}\right] T_{1}
$$

$$
\text { (2) } \frac{T \rightarrow T^{\prime}}{\lambda x \cdot T \rightarrow \lambda x \cdot T^{\prime}}
$$

$$
\text { (3) } \frac{T_{1} \rightarrow T_{1}^{\prime}}{T_{1} T_{2} \rightarrow T_{1}^{\prime} T_{2}}
$$

$$
\text { (4) } \frac{T_{2} \rightarrow T_{2}^{\prime}}{T_{1} T_{2} \rightarrow T_{1} T_{2}^{\prime}}
$$

$\mathbf{S K K}=\underline{\lambda x} \cdot \lambda y \cdot \lambda z \cdot((x z)(y z)) \mathbf{K K} \quad$ def of \mathbf{S}
$\rightarrow \lambda y \cdot \lambda z \cdot((\mathbf{K} z)(y z)) \underline{K}$
$\rightarrow \lambda z .((\mathbf{K z})(\mathbf{K} z))$
$\rightarrow \lambda z .(((\lambda x . \lambda y . x) \underline{z})(\mathbf{K} z))$
$\rightarrow \lambda z .(\lambda y . z(\mathrm{~K} z))$
$\rightarrow \lambda z . z$
\rightarrow I
(1)
(1)
def of \mathbf{K}
(1)
(1)
def of I

Another look
$19 / 26$

Another look

$19 / 26$

first case

Another look

first case

Another look

first case

$\mathbf{K} z=(\lambda x \cdot \lambda y . x) z=\lambda y . z$
$(\lambda y . z) T=z$

Another look

$\mathbf{K} z=(\lambda x \cdot \lambda y \cdot x) z=\lambda y . z$
$(\lambda y . z) T=z$

Another look

$\mathbf{K} z=(\lambda x \cdot \lambda y \cdot x) z=\lambda y . z$
$(\lambda y . z) T=z$

Another look

$\mathbf{K} z=(\lambda x \cdot \lambda y \cdot x) z=\lambda y . z$
$(\lambda y . z) T=z$

Another look

second case

same result!
$\mathbf{K} z=(\lambda x \cdot \lambda y . x) z=\lambda y . z$
$(\lambda y . z) T=z$

Reduction systems

- A term T is irreducible or normal, if there exist no term it can reduce to ($T \nrightarrow$)
- If T reduces to T^{\prime} normal, T^{\prime} is called a normal form of T
\rightarrow A reduction sequence is a sequence $T_{1} \rightarrow \cdots \rightarrow T_{n}$
\Rightarrow denoted $T_{1} \rightarrow^{n} T_{n}$
\Rightarrow denoted $T_{1} \rightarrow^{*} T_{n}$ if you don't care about the number of steps
- Often, there is several reduction sequences starting from a term (e.g. SKK)
\rightarrow A reduction (resp. a term) is
- (strongly) normalizing if all (resp. its) reduction sequences are finite
- weakly normalizing if all terms have (resp. it has) a normal form
$\triangleright \Omega=(\lambda x . x x)(\lambda x . x x) \rightarrow \Omega$
\triangle
β-reduction is not weakly normalizing for $\Lambda_{\mathcal{X}}$

Confluence

- If T reduces to T_{1} and T_{2} there exists T^{\prime} such that T_{1} and T_{2} both reduce to T^{\prime}

- It shows that the path of computation is not important

A term has at most one normal form
Church-Rosser theorem
β-reduction is confluent on $\Lambda_{\mathcal{X}}$
\triangle Some terms reduces indefinitely but has a normal form: $\mathrm{KI} \Omega \rightarrow \mathrm{KI} \Omega$ or $\mathrm{KI} \Omega \rightarrow^{2} \mathrm{I}$
$\rightarrow \mathbf{A}$ reduction strategy is a way to choose the β-redex to reduce

- Standard orders
- Normal order
- the leftmost outermost reduction
- always finds the normal form if it exists
- Applicative order
- the leftmost innermost reduction
- only finds the normal form for normalizing terms
- but both reduce inside functions (rule (2))

Two other classical strategies (not using rule (2))

- call by name: resolve application before evaluating the arguments
- may duplicate computations
- call by value: evaluate argument before application
- optimal for sharing of computations

Is $\Lambda_{\mathcal{X}}$ a programming language?

- In theory, yes as everything can be encoded as a λ
- Turing has proved all computable functions can be written in $\wedge_{\mathcal{X}}$
- In practice not usable, what is this term ${ }^{3}$?
- $\lambda x y z u .(x(y z u) u) \lambda x y .(y(y x)) \lambda x y .(y x)$
- We extend its core with
- basic datatypes (integer, boolean, ...)
- data structures (pairs, lists,)
- recursion

It's the functional core of Ocaml!
${ }^{3}$ We use $\lambda x y z$. for $\lambda x . \lambda y . \lambda z$., this notation si called currying

Is $\Lambda_{\mathcal{X}}$ a programming language?

- In theory, yes as everything can be encoded as a λ
- Turing has proved all computable functions can be written in $\wedge_{\mathcal{X}}$
- In practice not usable, what is this term ${ }^{3}$?
- $\lambda x y z u .(x(y z u) u) \lambda x y .(y(y x)) \lambda x y$. $(y x)$
- $2+1$
- We extend its core with
- basic datatypes (integer, boolean, ...)
- data structures (pairs, lists,)
- recursion

It's the functional core of Ocaml!
${ }^{3}$ We use $\lambda x y z$. for $\lambda x . \lambda y . \lambda z$., this notation si called currying

Progress

24 / 26

(4) The syntactic landscape

(2) Computing with syntactic objects

(3) Conclusion

Conclusion

- The λ-calculus
$>$ anything that is computable can be expressed
- is often used to study sequential computation
- close to a programing language (Caml)
- for the interested [Lal90]
- Used to illustrate fundamental notions
- variables, scope
- induction
- substitution
- reduction
- Starting point to learn functional programming

Bibliographie I

N. Bourbaki.

Théorie des ensembles.
Eléments de mathématique. Springer, 2008.
是
René Lalement.
Logique Réduction Résolution.
ERI Masson, 1990.
The book has been translated in english under the title Computation as logic and edited by Prentice-Hall in 1993, ISBN 9780137700097.

