
29/09/2016

The λ-calculus
Mathematical modeling

of functions

Fabien Dagnat
ELU 610 – C5

1st semester 2019

Plan 2 / 26

1 The syntactic landscape

2 Computing with syntactic objects

3 Conclusion

The λ-calculus [Church] 3 / 26

I A formal language proposed by Alonzo Church in the 1930s to
model the notion of function

I http://en.wikipedia.org/wiki/Lambda_calculus
I We will use it to

I illustrate the notion of formal language
I understand fundamentals of formal reasoning
I introduce the functional paradigm

René Lalement
Logique Réduction Résolution
ERI Masson, 1990
Book translated in english Computation as logic,
Prentice-Hall in 1993, ISBN 9780137700097

http://en.wikipedia.org/wiki/Lambda_calculus

Progress 4 / 26

1 The syntactic landscape

2 Computing with syntactic objects

3 Conclusion

The syntax of the λ-calculus 5 / 26

I The set ΛX of the terms defined by
I variables x , y , ... from a denumerable set X
I applications (T1T2) of a term T1 (the function) to a term T2 (the

argument)
I functions (λx .T) of a variable x (the parameter) and a term T (the

body)

I BNF: T ::= x | (TT) | (λx .T)

I Parenthesis may be omitted
I outer: (T1T2) = T1T2 and (λx .T) = λx .T
I application is left associative: T1T2T3 = (T1T2)T3
I λ is right associative: λx .λy .T = λx .(λy .T) and

λx .T1T2 = λx .(T1T2)

I Some well-known λ-terms
I λx .x = I λx .λy .x = K λx .λy .λz.((xz)(yz)) = S

Abstract syntax 6 / 26

I ΛX = T{@,λ}[X] with
I @ is the only constructor and ar(@) = 2
I λ is the only binder and ar(λ) = 1

I Terms are trees
I variables are leaves
I constructors and binders are nodes

I ex: (λx .T)(T1T2)

@

λ

x T

@

T1 T2

Variables, scope and binding 7 / 26

λ

x @

x @

@

λ

x x

y

λ

y @

@

x y

z

Defining occurrences
(left child of λ)

Usage occurrences
(other places)

Defining occurrences
have scopes

Usage occurrences may
be bound to defining ones
(the first λ going up)

Usage occurrences may
be free
(no λ going up)

y

z

Variables, scope and binding 7 / 26

λ

x @

x @

@

λ

x x

y

λ

y @

@

x y

z

Defining occurrences
(left child of λ)

Usage occurrences
(other places)

Defining occurrences
have scopes

Usage occurrences may
be bound to defining ones
(the first λ going up)

Usage occurrences may
be free
(no λ going up)

y

z

Variables, scope and binding 7 / 26

λ

x @

x @

@

λ

x x

y

λ

y @

@

x y

z

Defining occurrences
(left child of λ)

Usage occurrences
(other places)

Defining occurrences
have scopes

Usage occurrences may
be bound to defining ones
(the first λ going up)

Usage occurrences may
be free
(no λ going up)

y

z

Variables, scope and binding 7 / 26

λ

x @

x @

@

λ

x x

y

λ

y @

@

x y

z

Defining occurrences
(left child of λ)

Usage occurrences
(other places)

Defining occurrences
have scopes

Usage occurrences may
be bound to defining ones
(the first λ going up)

Usage occurrences may
be free
(no λ going up)

y

z

Free and bound variables 8 / 26

I A free variable is defined outside the term
I a kind of global variable (for the term)
I its name is essential and cannot be modified
I λx .y is different from λx .z

I A bound variable is intern to the term
I a kind of local variable (for the term)
I its name can be modified (the defining occurrence and all its

depending bound occurrences)
I λx .x is identical to λy .y
I known as α-conversion (see later for the mathematical definition)
I the name of a bound variable has no importance, only the link to

its binder1

I A term with free variables is open
I A term with no free variables is closed (a.k.a. combinators)

1there exists notations without names, see for example [Bou08]

Reminder 9 / 26

I One can define a function f on N recursively by
1. defining f (0)
2. defining f (n + 1) in terms of f (n)

for example, factorial
1. 0! = 1
2. (n + 1)! = (n + 1)n!

I One can prove a property P on N by
1. proving P(0)
2. proving that if P(n) holds, P(n + 1) is true

for example, if P(n) is 0 + 1 + · · ·+ n = n(n+1)
2

1. 0 = 0
2. 0 + 1 + · · ·+ n + (n + 1) = n(n+1)

2 + (n + 1) = (n + 1)(n
2 + 1)

= (n+1)(n+2)
2

I Variants: starting at k or P(0), . . . ,P(n)⇒ P(n + 1)

Induction I 10 / 26

I (Structural) induction is a method of definition or proof on the
set of terms TΣ[X]

I One can define a function f on ΛX inductively by
1. defining f on X (leaves)
2. defining f (T1T2) in terms of f (T1) and f (T2)
3. defining f (λx .T) in terms of f (T)

I For example, the set of free variables FV is defined by
1. FV (x) = {x}
2. FV (T1T2) = FV (T1) ∪ FV (T2)
3. FV (λx .T) = FV (T) \ {x}

I For example, the size of a λ-term is defined by
1. size(x) = 1
2. size(T1T2) = size(T1) + size(T2) + 1
3. size(λx .T) = size(T) + 1

Induction II 11 / 26

I One can prove a property P on ΛX inductively by
1. proving P on X
2. proving P(T1T2) supposing P(T1) and P(T2) are true
3. proving P(λx .T) supposing P(T) is true

I Prove ∀T ∈ ΛX , card(FV (T)) ≤ size(T)

1. card(FV (x)) = card({x}) = 1 = size(x)
2. let’s suppose card(FV (Ti)) ≤ size(Ti) for i in {1, 2} (IH)

card(FV (T1T2)) = card(FV (T1) ∪ FV (T2)) def of FV
≤ card(FV (T1)) + card(FV (T2)) prop of card
≤ size(T1) + size(T2) IH
≤ size(T1T2) def of size

3. let’s suppose card(FV (T)) ≤ size(T) (IH)
card(FV (λx .T)) = card(FV (T) \ {x}) def of FV

≤ card(FV (T)) prop of card
≤ size(T) IH
≤ size(λx .T) def of size

Induction II 11 / 26

I One can prove a property P on ΛX inductively by
1. proving P on X
2. proving P(T1T2) supposing P(T1) and P(T2) are true
3. proving P(λx .T) supposing P(T) is true

I Prove ∀T ∈ ΛX , card(FV (T)) ≤ size(T)

1. card(FV (x)) = card({x}) = 1 = size(x)

2. let’s suppose card(FV (Ti)) ≤ size(Ti) for i in {1, 2} (IH)
card(FV (T1T2)) = card(FV (T1) ∪ FV (T2)) def of FV

≤ card(FV (T1)) + card(FV (T2)) prop of card
≤ size(T1) + size(T2) IH
≤ size(T1T2) def of size

3. let’s suppose card(FV (T)) ≤ size(T) (IH)
card(FV (λx .T)) = card(FV (T) \ {x}) def of FV

≤ card(FV (T)) prop of card
≤ size(T) IH
≤ size(λx .T) def of size

Induction II 11 / 26

I One can prove a property P on ΛX inductively by
1. proving P on X
2. proving P(T1T2) supposing P(T1) and P(T2) are true
3. proving P(λx .T) supposing P(T) is true

I Prove ∀T ∈ ΛX , card(FV (T)) ≤ size(T)

1. card(FV (x)) = card({x}) = 1 = size(x)
2. let’s suppose card(FV (Ti)) ≤ size(Ti) for i in {1, 2} (IH)

card(FV (T1T2)) = card(FV (T1) ∪ FV (T2)) def of FV
≤ card(FV (T1)) + card(FV (T2)) prop of card
≤ size(T1) + size(T2) IH
≤ size(T1T2) def of size

3. let’s suppose card(FV (T)) ≤ size(T) (IH)
card(FV (λx .T)) = card(FV (T) \ {x}) def of FV

≤ card(FV (T)) prop of card
≤ size(T) IH
≤ size(λx .T) def of size

Induction II 11 / 26

I One can prove a property P on ΛX inductively by
1. proving P on X
2. proving P(T1T2) supposing P(T1) and P(T2) are true
3. proving P(λx .T) supposing P(T) is true

I Prove ∀T ∈ ΛX , card(FV (T)) ≤ size(T)

1. card(FV (x)) = card({x}) = 1 = size(x)
2. let’s suppose card(FV (Ti)) ≤ size(Ti) for i in {1, 2} (IH)

card(FV (T1T2)) = card(FV (T1) ∪ FV (T2)) def of FV
≤ card(FV (T1)) + card(FV (T2)) prop of card
≤ size(T1) + size(T2) IH
≤ size(T1T2) def of size

3. let’s suppose card(FV (T)) ≤ size(T) (IH)
card(FV (λx .T)) = card(FV (T) \ {x}) def of FV

≤ card(FV (T)) prop of card
≤ size(T) IH
≤ size(λx .T) def of size

Induction II 11 / 26

I One can prove a property P on ΛX inductively by
1. proving P on X
2. proving P(T1T2) supposing P(T1) and P(T2) are true
3. proving P(λx .T) supposing P(T) is true

I Prove ∀T ∈ ΛX , card(FV (T)) ≤ size(T)

1. card(FV (x)) = card({x}) = 1 = size(x)
2. let’s suppose card(FV (Ti)) ≤ size(Ti) for i in {1, 2} (IH)

card(FV (T1T2)) = card(FV (T1) ∪ FV (T2)) def of FV
≤ card(FV (T1)) + card(FV (T2)) prop of card
≤ size(T1) + size(T2) IH
≤ size(T1T2) def of size

3. let’s suppose card(FV (T)) ≤ size(T) (IH)

card(FV (λx .T)) = card(FV (T) \ {x}) def of FV
≤ card(FV (T)) prop of card
≤ size(T) IH
≤ size(λx .T) def of size

Induction II 11 / 26

I One can prove a property P on ΛX inductively by
1. proving P on X
2. proving P(T1T2) supposing P(T1) and P(T2) are true
3. proving P(λx .T) supposing P(T) is true

I Prove ∀T ∈ ΛX , card(FV (T)) ≤ size(T)

1. card(FV (x)) = card({x}) = 1 = size(x)
2. let’s suppose card(FV (Ti)) ≤ size(Ti) for i in {1, 2} (IH)

card(FV (T1T2)) = card(FV (T1) ∪ FV (T2)) def of FV
≤ card(FV (T1)) + card(FV (T2)) prop of card
≤ size(T1) + size(T2) IH
≤ size(T1T2) def of size

3. let’s suppose card(FV (T)) ≤ size(T) (IH)
card(FV (λx .T)) = card(FV (T) \ {x}) def of FV

≤ card(FV (T)) prop of card
≤ size(T) IH
≤ size(λx .T) def of size

Substitutions 12 / 26

I Giving a meaning to a free variable is done by substitution
I Substitution is a function associating a term to

I a variable (the substituted variable) and
I two terms (the replacement term and the term on which

substitution operates)

I [x 7→T1]T2 is the term defined by replacing all free
occurrences of x within T2 by T1

x 7→ λ

x x

@

λ

y @

x y

x
=

@

λ

y @

λ

x x

y

λ

x x

Substitutions 12 / 26

I Giving a meaning to a free variable is done by substitution
I Substitution is a function associating a term to

I a variable (the substituted variable) and
I two terms (the replacement term and the term on which

substitution operates)

I [x 7→T1]T2 is the term defined by replacing all free
occurrences of x within T2 by T1

x 7→ λ

x x

@

λ

y @

x y

x
=

@

λ

y @

λ

x x

y

λ

x x

Substitutions 12 / 26

I Giving a meaning to a free variable is done by substitution
I Substitution is a function associating a term to

I a variable (the substituted variable) and
I two terms (the replacement term and the term on which

substitution operates)

I [x 7→T1]T2 is the term defined by replacing all free
occurrences of x within T2 by T1

x 7→ λ

x x

@

λ

y @

x y

x
=

@

λ

y @

λ

x x

y

λ

x x

Substitutions 12 / 26

I Giving a meaning to a free variable is done by substitution
I Substitution is a function associating a term to

I a variable (the substituted variable) and
I two terms (the replacement term and the term on which

substitution operates)

I [x 7→T1]T2 is the term defined by replacing all free
occurrences of x within T2 by T1

x 7→ λ

x x

@

λ

y @

x y

x
=

@

λ

y @

λ

x x

y

λ

x x

Substitution on ΛX 13 / 26

I Defined inductively
[x 7→T]x = T
[x 7→T]y = y if x 6=y
[x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2

[x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6=y , y /∈FV (T)

the last condition prevent captures of a free y in T
I The definition is incomplete e.g. [x 7→T]λx .T ′, [x 7→y]λy .T
I α-conversion (a.k.a. α-equivalence) is defined by
λx .T =α λy .[x 7→y]T if y /∈ FV (T) (freshness condition)

I The definition of substitution is complete modulo renaming
I if x = y or y ∈FV (M), we rename the bound y

I We always work on ΛX/=α (modulo renaming)

An example 14 / 26

(1) [x 7→T]x = T
(2) [x 7→T]y = y if x 6= y
(3) [x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2
(4) [x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6= y and y /∈ FV (T)

(α) λx .T = λy .[x 7→y]T if y /∈ FV (T)

I [z 7→λx .xy]λz.x (λy .zy) =

(3) = [z 7→λx .xy]λz.x ([z 7→λx .xy]λy .zy)
(α)(α) = [z 7→λx .xy](λt .[z 7→ t]x) ([z 7→λx .xy](λu.[y 7→u]zy))
(2)(3,2+1) = [z 7→λx .xy]λt .x ([z 7→λx .xy]λu.zu)
(4)(4) = λt .[z 7→λx .xy]x (λu.[z 7→λx .xy]zu)
(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .

An example 14 / 26

(1) [x 7→T]x = T
(2) [x 7→T]y = y if x 6= y
(3) [x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2
(4) [x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6= y and y /∈ FV (T)

(α) λx .T = λy .[x 7→y]T if y /∈ FV (T)

I [z 7→λx .xy]λz.x (λy .zy) =

(3) = [z 7→λx .xy]λz.x ([z 7→λx .xy]λy .zy)

(α)(α) = [z 7→λx .xy](λt .[z 7→ t]x) ([z 7→λx .xy](λu.[y 7→u]zy))
(2)(3,2+1) = [z 7→λx .xy]λt .x ([z 7→λx .xy]λu.zu)
(4)(4) = λt .[z 7→λx .xy]x (λu.[z 7→λx .xy]zu)
(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .

An example 14 / 26

(1) [x 7→T]x = T
(2) [x 7→T]y = y if x 6= y
(3) [x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2
(4) [x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6= y and y /∈ FV (T)

(α) λx .T = λy .[x 7→y]T if y /∈ FV (T)

I [z 7→λx .xy]λz.x (λy .zy) =

(3) = [z 7→λx .xy]λz.x ([z 7→λx .xy]λy .zy)
(α)(α) = [z 7→λx .xy](λt .[z 7→ t]x) ([z 7→λx .xy](λu.[y 7→u]zy))

(2)(3,2+1) = [z 7→λx .xy]λt .x ([z 7→λx .xy]λu.zu)
(4)(4) = λt .[z 7→λx .xy]x (λu.[z 7→λx .xy]zu)
(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .

An example 14 / 26

(1) [x 7→T]x = T
(2) [x 7→T]y = y if x 6= y
(3) [x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2
(4) [x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6= y and y /∈ FV (T)

(α) λx .T = λy .[x 7→y]T if y /∈ FV (T)

I [z 7→λx .xy]λz.x (λy .zy) =

(3) = [z 7→λx .xy]λz.x ([z 7→λx .xy]λy .zy)
(α)(α) = [z 7→λx .xy](λt .[z 7→ t]x) ([z 7→λx .xy](λu.[y 7→u]zy))
(2)(3,2+1) = [z 7→λx .xy]λt .x ([z 7→λx .xy]λu.zu)

(4)(4) = λt .[z 7→λx .xy]x (λu.[z 7→λx .xy]zu)
(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .

An example 14 / 26

(1) [x 7→T]x = T
(2) [x 7→T]y = y if x 6= y
(3) [x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2
(4) [x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6= y and y /∈ FV (T)

(α) λx .T = λy .[x 7→y]T if y /∈ FV (T)

I [z 7→λx .xy]λz.x (λy .zy) =

(3) = [z 7→λx .xy]λz.x ([z 7→λx .xy]λy .zy)
(α)(α) = [z 7→λx .xy](λt .[z 7→ t]x) ([z 7→λx .xy](λu.[y 7→u]zy))
(2)(3,2+1) = [z 7→λx .xy]λt .x ([z 7→λx .xy]λu.zu)
(4)(4) = λt .[z 7→λx .xy]x (λu.[z 7→λx .xy]zu)

(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .

An example 14 / 26

(1) [x 7→T]x = T
(2) [x 7→T]y = y if x 6= y
(3) [x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2
(4) [x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6= y and y /∈ FV (T)

(α) λx .T = λy .[x 7→y]T if y /∈ FV (T)

I [z 7→λx .xy]λz.x (λy .zy) =

(3) = [z 7→λx .xy]λz.x ([z 7→λx .xy]λy .zy)
(α)(α) = [z 7→λx .xy](λt .[z 7→ t]x) ([z 7→λx .xy](λu.[y 7→u]zy))
(2)(3,2+1) = [z 7→λx .xy]λt .x ([z 7→λx .xy]λu.zu)
(4)(4) = λt .[z 7→λx .xy]x (λu.[z 7→λx .xy]zu)
(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .

An example 14 / 26

(1) [x 7→T]x = T
(2) [x 7→T]y = y if x 6= y
(3) [x 7→T]T1T2 = [x 7→T]T1[x 7→T]T2
(4) [x 7→T]λy .T ′ = λy .[x 7→T]T ′ if x 6= y and y /∈ FV (T)

(α) λx .T = λy .[x 7→y]T if y /∈ FV (T)

I [z 7→λx .xy]λz.x (λy .zy) =

(3) = [z 7→λx .xy]λz.x ([z 7→λx .xy]λy .zy)
(α)(α) = [z 7→λx .xy](λt .[z 7→ t]x) ([z 7→λx .xy](λu.[y 7→u]zy))
(2)(3,2+1) = [z 7→λx .xy]λt .x ([z 7→λx .xy]λu.zu)
(4)(4) = λt .[z 7→λx .xy]x (λu.[z 7→λx .xy]zu)
(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .

Progress 15 / 26

1 The syntactic landscape

2 Computing with syntactic objects

3 Conclusion

Computation for ΛX 16 / 26

I The usual function call can be modeled by

(λx .T1)T2 → [x 7→T2]T1

(1) (2) (3)

where (1) is the function, (2) the argument and (3) the result
I For example II = λx .x λx .x → [x 7→λx .x]x = λx .x = I
I This rule is called β-reduction (def later)
I It can be applied anywhere within a term
I A location in a term where it can be applied is called a β-redex

Judgment, Inference Rule and Derivation 17 / 26

I A judgment is a logical assertion, here2: Term→ OtherTerm
I An inference rule is a set of judgments J1, ..., Jn, J such that

J1 ∧ ... ∧ Jn ⇒ J
I J1, ... ,Jn are the premises, J is the conclusion
I written J1 · · · Jn

J

I An axiom is an inference rule with no premise

I A derivation is a tree of such rules where the leaves are axioms

J1 J2
· · ·

J3
· · ·

J4

J5

J6

see http://en.wikipedia.org/wiki/Inference_rule

2There exists various other forms of judgment

http://en.wikipedia.org/wiki/Inference_rule

β-reduction 18 / 26

(1) (λx .T1)T2 → [x 7→T2]T1
(2)

T → T ′

λx .T → λx .T ′

(3)
T1 → T ′1

T1T2 → T ′1T2
(4)

T2 → T ′2
T1T2 → T1T ′2

SKK = λx .λy .λz.((xz)(yz))KK def of S
→ λy .λz.((Kz)(yz))K (1)
→ λz.((Kz)(Kz)) (1)
→ λz.(((λx .λy .x)z)(Kz)) def of K
→ λz.(λy .z(Kz)) (1)
→ λz.z (1)
→ I def of I

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first casesecond case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first casesecond case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first casesecond case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z

I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Another look 19 / 26

@

λ

x , y , z @

@

x z

@

y z

K K

K

y , z

K

z

y

λ

z

first case

second case

same result!

I Kz = (λx .λy .x)z = λy .z
I (λy .z)T = z

Reduction systems 20 / 26

I A term T is irreducible or normal, if there exist no term it can
reduce to (T 6→)

I If T reduces to T ′ normal, T ′ is called a normal form of T
I A reduction sequence is a sequence T1 → · · · → Tn

I denoted T1 →n Tn
I denoted T1 →∗ Tn if you don’t care about the number of steps

I Often, there is several reduction sequences starting from a
term (e.g. SKK)

I A reduction (resp. a term) is
I (strongly) normalizing if all (resp. its) reduction sequences are

finite
I weakly normalizing if all terms have (resp. it has) a normal form

I Ω = (λx .xx)(λx .xx)→ Ω
B β-reduction is not weakly normalizing for ΛX

Confluence 21 / 26

I If T reduces to T1 and T2 there exists T ′ such that T1 and T2

both reduce to T ′ T

T1 T2

T ′

I It shows that the path of computation is not important
I A term has at most one normal form

Church-Rosser theorem

β-reduction is confluent on ΛX

B Some terms reduces indefinitely but has a normal form:
KIΩ→ KIΩ or KIΩ→2 I

Reduction strategy 22 / 26

I A reduction strategy is a way to choose the β-redex to reduce
I Standard orders

I Normal order
I the leftmost outermost reduction
I always finds the normal form if it exists

I Applicative order
I the leftmost innermost reduction
I only finds the normal form for normalizing terms

I but both reduce inside functions (rule (2))
I Two other classical strategies (not using rule (2))

I call by name: resolve application before evaluating the arguments
I may duplicate computations

I call by value: evaluate argument before application
I optimal for sharing of computations

Is ΛX a programming language? 23 / 26

I In theory, yes as everything can be encoded as a λ
I Turing has proved all computable functions can be written in ΛX

I In practice not usable, what is this term3?
I λxyzu.(x(yzu)u)λxy .(y(yx))λxy .(yx)

I 2 + 1

I We extend its core with
I basic datatypes (integer, boolean, . . .)
I data structures (pairs, lists, . . .)
I recursion
I . . .

It’s the functional core of Ocaml! http://caml.inria.fr/ocaml

3We use λxyz. for λx .λy .λz., this notation si called currying

http://caml.inria.fr/ocaml

Is ΛX a programming language? 23 / 26

I In theory, yes as everything can be encoded as a λ
I Turing has proved all computable functions can be written in ΛX

I In practice not usable, what is this term3?
I λxyzu.(x(yzu)u)λxy .(y(yx))λxy .(yx)
I 2 + 1

I We extend its core with
I basic datatypes (integer, boolean, . . .)
I data structures (pairs, lists, . . .)
I recursion
I . . .

It’s the functional core of Ocaml! http://caml.inria.fr/ocaml

3We use λxyz. for λx .λy .λz., this notation si called currying

http://caml.inria.fr/ocaml

Progress 24 / 26

1 The syntactic landscape

2 Computing with syntactic objects

3 Conclusion

Conclusion 25 / 26

I The λ-calculus
I anything that is computable can be expressed
I is often used to study sequential computation
I close to a programing language (Caml)
I for the interested [Lal90]

I Used to illustrate fundamental notions
I variables, scope
I induction
I substitution
I reduction

I Starting point to learn functional programming

Bibliographie I 26 / 26

N. Bourbaki.

Théorie des ensembles.

Eléments de mathématique. Springer, 2008.

René Lalement.

Logique Réduction Résolution.

ERI Masson, 1990.

The book has been translated in english under the title Computation as
logic and edited by Prentice-Hall in 1993, ISBN 9780137700097.

	The syntactic landscape
	Computing with syntactic objects
	Conclusion

