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The λ-calculus [Church] 3 / 26

I A formal language proposed by Alonzo Church in the 1930s to
model the notion of function

I http://en.wikipedia.org/wiki/Lambda_calculus
I We will use it to

I illustrate the notion of formal language
I understand fundamentals of formal reasoning
I introduce the functional paradigm

René Lalement
Logique Réduction Résolution
ERI Masson, 1990
Book translated in english Computation as logic,
Prentice-Hall in 1993, ISBN 9780137700097

http://en.wikipedia.org/wiki/Lambda_calculus
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The syntax of the λ-calculus 5 / 26

I The set ΛX of the terms defined by
I variables x , y , ... from a denumerable set X
I applications (T1T2) of a term T1 (the function) to a term T2 (the

argument)
I functions (λx .T ) of a variable x (the parameter) and a term T (the

body)

I BNF: T ::= x | (TT ) | (λx .T )

I Parenthesis may be omitted
I outer: (T1T2) = T1T2 and (λx .T ) = λx .T
I application is left associative: T1T2T3 = (T1T2)T3
I λ is right associative: λx .λy .T = λx .(λy .T ) and

λx .T1T2 = λx .(T1T2)

I Some well-known λ-terms
I λx .x = I λx .λy .x = K λx .λy .λz.((xz)(yz)) = S



Abstract syntax 6 / 26

I ΛX = T{@,λ}[X ] with
I @ is the only constructor and ar(@) = 2
I λ is the only binder and ar(λ) = 1

I Terms are trees
I variables are leaves
I constructors and binders are nodes

I ex: (λx .T )(T1T2)

@

λ

x T

@

T1 T2
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Free and bound variables 8 / 26

I A free variable is defined outside the term
I a kind of global variable (for the term)
I its name is essential and cannot be modified
I λx .y is different from λx .z

I A bound variable is intern to the term
I a kind of local variable (for the term)
I its name can be modified (the defining occurrence and all its

depending bound occurrences)
I λx .x is identical to λy .y
I known as α-conversion (see later for the mathematical definition)
I the name of a bound variable has no importance, only the link to

its binder1

I A term with free variables is open
I A term with no free variables is closed (a.k.a. combinators)

1there exists notations without names, see for example [Bou08]



Reminder 9 / 26

I One can define a function f on N recursively by
1. defining f (0)
2. defining f (n + 1) in terms of f (n)

for example, factorial
1. 0! = 1
2. (n + 1)! = (n + 1)n!

I One can prove a property P on N by
1. proving P(0)
2. proving that if P(n) holds, P(n + 1) is true

for example, if P(n) is 0 + 1 + · · ·+ n = n(n+1)
2

1. 0 = 0
2. 0 + 1 + · · ·+ n + (n + 1) = n(n+1)

2 + (n + 1) = (n + 1)( n
2 + 1)

= (n+1)(n+2)
2

I Variants: starting at k or P(0), . . . ,P(n)⇒ P(n + 1)



Induction I 10 / 26

I (Structural) induction is a method of definition or proof on the
set of terms TΣ[X ]

I One can define a function f on ΛX inductively by
1. defining f on X (leaves)
2. defining f (T1T2) in terms of f (T1) and f (T2)
3. defining f (λx .T ) in terms of f (T )

I For example, the set of free variables FV is defined by
1. FV (x) = {x}
2. FV (T1T2) = FV (T1) ∪ FV (T2)
3. FV (λx .T ) = FV (T ) \ {x}

I For example, the size of a λ-term is defined by
1. size(x) = 1
2. size(T1T2) = size(T1) + size(T2) + 1
3. size(λx .T ) = size(T ) + 1



Induction II 11 / 26

I One can prove a property P on ΛX inductively by
1. proving P on X
2. proving P(T1T2) supposing P(T1) and P(T2) are true
3. proving P(λx .T ) supposing P(T ) is true

I Prove ∀T ∈ ΛX , card(FV (T )) ≤ size(T )

1. card(FV (x)) = card({x}) = 1 = size(x)
2. let’s suppose card(FV (Ti)) ≤ size(Ti) for i in {1, 2} (IH)

card(FV (T1T2)) = card(FV (T1) ∪ FV (T2)) def of FV
≤ card(FV (T1)) + card(FV (T2)) prop of card
≤ size(T1) + size(T2) IH
≤ size(T1T2) def of size

3. let’s suppose card(FV (T )) ≤ size(T ) (IH)
card(FV (λx .T )) = card(FV (T ) \ {x}) def of FV

≤ card(FV (T )) prop of card
≤ size(T ) IH
≤ size(λx .T ) def of size
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I Giving a meaning to a free variable is done by substitution
I Substitution is a function associating a term to

I a variable (the substituted variable) and
I two terms (the replacement term and the term on which

substitution operates)

I [x 7→T1]T2 is the term defined by replacing all free
occurrences of x within T2 by T1

x 7→ λ

x x
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y @

x y

x
=

@
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Substitution on ΛX 13 / 26

I Defined inductively
[x 7→T ]x = T
[x 7→T ]y = y if x 6=y
[x 7→T ]T1T2 = [x 7→T ]T1[x 7→T ]T2

[x 7→T ]λy .T ′ = λy .[x 7→T ]T ′ if x 6=y , y /∈FV (T )

the last condition prevent captures of a free y in T
I The definition is incomplete e.g. [x 7→T ]λx .T ′, [x 7→y ]λy .T
I α-conversion (a.k.a. α-equivalence) is defined by
λx .T =α λy .[x 7→y ]T if y /∈ FV (T ) (freshness condition)

I The definition of substitution is complete modulo renaming
I if x = y or y ∈FV (M), we rename the bound y

I We always work on ΛX/=α (modulo renaming)



An example 14 / 26



(1) [x 7→T ]x = T
(2) [x 7→T ]y = y if x 6= y
(3) [x 7→T ]T1T2 = [x 7→T ]T1[x 7→T ]T2
(4) [x 7→T ]λy .T ′ = λy .[x 7→T ]T ′ if x 6= y and y /∈ FV (T )

(α) λx .T = λy .[x 7→y ]T if y /∈ FV (T )

I [z 7→λx .xy ]λz.x (λy .zy) =

(3) = [z 7→λx .xy ]λz.x ([z 7→λx .xy ]λy .zy)
(α)(α) = [z 7→λx .xy ](λt .[z 7→ t ]x) ([z 7→λx .xy ](λu.[y 7→u]zy))
(2)(3,2+1) = [z 7→λx .xy ]λt .x ([z 7→λx .xy ]λu.zu)
(4)(4) = λt .[z 7→λx .xy ]x (λu.[z 7→λx .xy ]zu)
(2)(3,1+2) = λt .x (λu.(λx .xy)u)

I Everyone should be comfortable with such rewritings. . .
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Computation for ΛX 16 / 26

I The usual function call can be modeled by

(λx .T1)T2 → [x 7→T2]T1

(1) (2) (3)

where (1) is the function, (2) the argument and (3) the result
I For example II = λx .x λx .x → [x 7→λx .x ]x = λx .x = I
I This rule is called β-reduction (def later)
I It can be applied anywhere within a term
I A location in a term where it can be applied is called a β-redex



Judgment, Inference Rule and Derivation 17 / 26

I A judgment is a logical assertion, here2: Term→ OtherTerm
I An inference rule is a set of judgments J1, ..., Jn, J such that

J1 ∧ ... ∧ Jn ⇒ J
I J1, ... ,Jn are the premises, J is the conclusion
I written J1 · · · Jn

J

I An axiom is an inference rule with no premise

I A derivation is a tree of such rules where the leaves are axioms

J1 J2
· · ·

J3
· · ·

J4

J5

J6

see http://en.wikipedia.org/wiki/Inference_rule

2There exists various other forms of judgment

http://en.wikipedia.org/wiki/Inference_rule


β-reduction 18 / 26

(1) (λx .T1)T2 → [x 7→T2]T1
(2)

T → T ′

λx .T → λx .T ′

(3)
T1 → T ′1

T1T2 → T ′1T2
(4)

T2 → T ′2
T1T2 → T1T ′2

SKK = λx .λy .λz.((xz)(yz))KK def of S
→ λy .λz.((Kz)(yz))K (1)
→ λz.((Kz)(Kz)) (1)
→ λz.(((λx .λy .x)z)(Kz)) def of K
→ λz.(λy .z(Kz)) (1)
→ λz.z (1)
→ I def of I
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Reduction systems 20 / 26

I A term T is irreducible or normal, if there exist no term it can
reduce to (T 6→)

I If T reduces to T ′ normal, T ′ is called a normal form of T
I A reduction sequence is a sequence T1 → · · · → Tn

I denoted T1 →n Tn
I denoted T1 →∗ Tn if you don’t care about the number of steps

I Often, there is several reduction sequences starting from a
term (e.g. SKK)

I A reduction (resp. a term) is
I (strongly) normalizing if all (resp. its) reduction sequences are

finite
I weakly normalizing if all terms have (resp. it has) a normal form

I Ω = (λx .xx)(λx .xx)→ Ω
B β-reduction is not weakly normalizing for ΛX
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I If T reduces to T1 and T2 there exists T ′ such that T1 and T2

both reduce to T ′ T

T1 T2

T ′

I It shows that the path of computation is not important
I A term has at most one normal form

Church-Rosser theorem

β-reduction is confluent on ΛX

B Some terms reduces indefinitely but has a normal form:
KIΩ→ KIΩ or KIΩ→2 I
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I A reduction strategy is a way to choose the β-redex to reduce
I Standard orders

I Normal order
I the leftmost outermost reduction
I always finds the normal form if it exists

I Applicative order
I the leftmost innermost reduction
I only finds the normal form for normalizing terms

I but both reduce inside functions (rule (2))
I Two other classical strategies (not using rule (2))

I call by name: resolve application before evaluating the arguments
I may duplicate computations

I call by value: evaluate argument before application
I optimal for sharing of computations
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I In theory, yes as everything can be encoded as a λ
I Turing has proved all computable functions can be written in ΛX

I In practice not usable, what is this term3?
I λxyzu.(x(yzu)u)λxy .(y(yx))λxy .(yx)

I 2 + 1

I We extend its core with
I basic datatypes (integer, boolean, . . . )
I data structures (pairs, lists, . . . )
I recursion
I . . .

It’s the functional core of Ocaml! http://caml.inria.fr/ocaml

3We use λxyz. for λx .λy .λz., this notation si called currying

http://caml.inria.fr/ocaml
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I The λ-calculus
I anything that is computable can be expressed
I is often used to study sequential computation
I close to a programing language (Caml)
I for the interested [Lal90]

I Used to illustrate fundamental notions
I variables, scope
I induction
I substitution
I reduction

I Starting point to learn functional programming
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