
29/09/2016

Lecture notes – Compilation with OCaml
Langages et logique – ELU 610

Compilation is based first and foremost on the recognition of programs in a stream of characters.
The purpose of this section is to discover the practical aspects of lexical analysis and parsing.
Lexical analysis consists in recognizing words of our language in sequences of characters. It is
generally followed by parsing that groups these words together to recognize sentences. In the
domain, we speak of token for words and syntactic units for sentences. For the purposes of the
following phases of compilation, syntactic units are built in the form of a tree: the so called
Abstract Syntax Tree (AST). The figure 1 represents the chaining of these two transformations
representing what sometimes is called the front end of the compiler. It aims at building a data
structure representing the program in an efficient way. In red are displayed examples of results of
each phase. It should be noted that, in general, the lexical analyzer, often called a lexer, is driven
by the parser that requests tokens whenever it needs them. Hence, the next commands in red.

Lexer Parser
token

control

Stream of
characters

Abstract
Syntax Tree

’1’ ’3’ ’+’ ’x’ ’1’

〈13〉 〈+〉 〈x1〉

next next next
+

13 x1

Figure 1: A compiler front end: lexical analysis and parsing.

In general, these analyzers are efficient automata that search for lexical and syntactic patterns
using regular expressions. It is difficult and cumbersome to implement an automata. Therefore,
Domain Specific Languages (DSL) have been proposed to make it easier and smoother.

1 The tools

During this module, we will discover the tools OCamllex whose command is ocamllex and Menhir
whose command is menhir. They are OCaml versions of the standard Unix tools lex and yacc.
The OCaml manual contains a description of ocamllex at http://caml.inria.fr/pub/docs/
manual-ocaml/lexyacc.html and the Menhir page contains its documentation http://gallium.

1

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
http://gallium.inria.fr/~fpottier/menhir/menhir.html.fr
http://gallium.inria.fr/~fpottier/menhir/menhir.html.fr

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

from_channel

from_string

lexbuf

rule_1

· · ·

rule_n

string lexbuf

in_channel lexbuf

Lexing

XX

ocamllex

XX.mll

1. the type token

2. the rules rule_1, . . . , rule_n

3. other functions f_1, . . . , f_n

3

head

1 2 + a

tail

0start 1
0-9

0-9
+

Figure 2: Ocamllex, the big picture.

inria.fr/~fpottier/menhir/menhir.html.fr. The chapter 16 of the Real World OCaml book
can also help you.
OCamllex allows the construction of lexical analyzers as deterministic automatas. It uses a DSL
to specify using rules the actions to be executed when recognizing strings. From these rules, it
produces an OCaml module. It is, most of the time, used to transform a buffer of characters into
a sequence of tokens.
Menhir allows to build easily deterministic automata for parsing. It also provides a DSL dedicated
to the specification of rules describing the actions to execute when recognizing sentences. From
these rules, it produces an OCaml module. It is, in general, used to transform a sequence of tokens
into an AST.
The menhir tool produces an LR(1) stack automaton. To use menhir, it will need to be installed
by opam install menhir.

2 Using Ocamllex

2.1 The syntax of Ocamllex

The files for Ocamllex have the extension .mll and follow the following structure:
{ (∗ OCaml code: optional prelude ∗) }
(∗ useful regular expressions only for regexp part ∗)
let ident = regexp
let ident = regexp
(∗ a group of rules ∗)
rule ident [ident1 ... identn] = parse
| regexp { (∗ OCaml code ∗) }
| regexp { (∗ OCaml code ∗) }
(∗ another group of rules ∗)

IMT Atlantique 2 1st semester 2019

http://gallium.inria.fr/~fpottier/menhir/menhir.html.fr
http://gallium.inria.fr/~fpottier/menhir/menhir.html.fr

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

and ident [ident1 ... identn] = parse
...
{ (∗ OCaml code: optional postlude ∗) }

The two sections with Ocaml code at the beginning and end of the file are optional. They contain
code defining elements (types, functions, etc.) needed for the actions of the rules. The last section
can define functions using the functions corresponding to the rules given in the middle section.
The series of statements let preceding the definition of rules allows you to name regular ex-
pressions. These regular expression can then be reused in the definition of the rules using their
names. The regular expressions of Ocamllex follow the syntax presented Figure 3. Here are some
examples:

• [' ' '\014' '\t' '\012']+ ⇒ at least one space

• (['\n' '\r'] | "\r\n") ⇒ newline

• [^ '\n' '\r'] ⇒ any character except newline

• "//"[^ '\n' '\r']* ⇒ C like line comment

• Suppose
let digit = ['0'-'9']
let letter = ['a'-'z''A'-'Z']
let id_char = (letter | digit | '_')

• letter id_char* as id ⇒ identifiers, id contains the result

• digit+ as nb ⇒ integers

• digit* '.' digit* (['e' 'E'] ['+' '-']? digit+)? as nb ⇒ floating point numbers

Each rule, defined by the keyword rule, produces a function with the same name (it must be a
valid OCaml identifier). If the rule has arguments, the function obtained will have these arguments
in addition to one argument (the last) which is a buffer of type Lexing.lexbuf. The behavior of
this function is to search for a regular expression from its definition list that represents a buffer
prefix. The regular expression corresponding to the longest possible prefix is selected 1 and the
associated action is executed. The module Lexing contains some lexical buffers manipulation
functions that the developer can use to define his treatments. This module contains, among other
things 2:

• the type lexbuf;

• two constructors for this type: from_channel and from_string which respectively creates a
buffer from an input-output channel or a string;

• the functions:

– lexeme: returns the string recognized by the regular expression. In general, it is easier to
use the syntactic construct as allows more easily to extract a sub-part of the recognized
chain.

1If there are two regular expressions recognizing strings of the same size, the first in the definition order is used.
2For more details: http://caml.inria.fr/pub/docs/manual-ocaml/libref/Lexing.html.

IMT Atlantique 3 1st semester 2019

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Lexing.html

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

Expression Meaning
' char ' the character char
_ any character
eof end of input
" string " the string string
[ens] any character from ens, may contain ’c1’-’c2’ (all characters between c1

and c2)
[^ ens] any character not in ens
regexp * 0 or many time the string matching regexp
regexp + 1 or many time the string matching regexp
regexp ? nothing or the string matching regexp
regexp1 | regexp2 all string matching either regexp1 or regexp2
regexp1 regexp2 concatenations of two strings one matching regexp1 and the other regexp2
(regexp) the strings matching regexp
ident the previously defined regular expression ident
regexp as ident the result of the matching is bound to the OCaml variable ident

Figure 3: Ocamllex regular expression syntax

– lexeme_start: returns the position index of the beginning of the recognized chain.
– lexeme_end: which returns the position index of end of the recognized chain.

Each regular expression is compiled by the tool in an automaton. All the automata are merged
into a single automaton. This automaton is then determinized and minimized. Its code is inserted
between the two portions of OCaml code at the beginning and the end of the file .mll to form a
.ml file (which implements the lexical analysis).

2.2 A first example

To better illustrate Ocamllex syntax, let’s look at the file exprLexer_standalone.mll that im-
plements a lexer for the expression language Expr of in exercise 6 from the Discovering OCaml
document.

1 {
2 type token =
3 | EOF | PLUS | MINUS | TIMES | DIV | MOD | LPAR | RPAR
4 | INT of int | IDENT of string
5 let mk_int nb =
6 try INT (int_of_string nb)
7 with Failure _ -> failwith (Printf.sprintf "Illegal integer '%s': " nb)
8 }
9 let newline = (['\n' '\r'] | "\r\n")

IMT Atlantique 4 1st semester 2019

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

10 let blank = [' ' '\014' '\t' '\012']
11 let digit = ['0'-'9']
12 let letter = ['a'-'z' 'A'-'Z']
13 rule token = parse
14 (∗ newlines ∗)
15 | newline + { token lexbuf }
16 (∗ blanks ∗)
17 | blank + { token lexbuf }
18 (∗ end of file ∗)
19 | eof { EOF }
20 (∗ integers ∗)
21 | digit+ as nb { mk_int nb }
22 (∗ commands ∗)
23 | "+" { PLUS }
24 | "-" { MINUS }
25 | "/" { DIV }
26 | "*" { TIMES }
27 | "%" { MOD }
28 | "(" { LPAR }
29 | ")" { RPAR }
30 (∗ identifiers ∗)
31 | letter (letter | digit | '_')* as id { IDENT id }
32 (∗ illegal characters ∗)
33 | _ as c { failwith (Printf.sprintf "Illegal character '%c': " c) }

Lines 1 to 8 contain regular OCaml code that defines the token type and a function mk_int that
builds an integer from a string. The program fails if the string is not a correct integer. Can it
happen? Lines 9 to 12 define regular expressions to be reused in the rules. The remaining lines
define the only rule of the file, named token, that recognizes an Expr token. As long as there is
newlines characters or blank characters, the lexer continues its reading of the input buffer. If we
reach the end of the buffer (special character eof), we return the token representing it, EOF. When
we recognize a token, we return it and if an unknown character (one for which no rule matches)
is encountered, we fail with an error.
This file3 can be compiled by ocamllex. A file exprLexer_standalone.ml is then generated. In
this file the type token is defined, so do the functions mk_int of type string -> token and token
of type Lexing.lexbuf -> token implementing the defined automaton.
You can test it using utop:
let add i = i + 10 ;;
val add : int -> int = <fun>

3It can be downloaded from moodle.

IMT Atlantique 5 1st semester 2019

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

utop # #use "exprLexer_standalone.ml" ;;
type token =

EOF
| PLUS
| MINUS
| TIMES
| DIV
| MOD
| LPAR
| RPAR
| INT of int
| IDENT of string

val mk_int : string -> token = <fun>

val token : Lexing.lexbuf -> token = <fun>

utop # let buffer = Lexing.from_string "13 + x1" ;;
val buffer : Lexing.lexbuf =

{Lexing.refill_buff = <fun>; lex_buffer = Bytes.of_string "13 + x1";
lex_buffer_len = 7; lex_abs_pos = 0; lex_start_pos = 0; lex_curr_pos = 0;
lex_last_pos = 0; lex_last_action = 0; lex_eof_reached = true;
lex_mem = [||];
lex_start_p =
{Lexing.pos_fname = ""; pos_lnum = 1; pos_bol = 0; pos_cnum = 0};
lex_curr_p =
{Lexing.pos_fname = ""; pos_lnum = 1; pos_bol = 0; pos_cnum = 0}}

utop # token buffer ;;
- : token = INT 13

utop # token buffer ;;
- : token = PLUS

utop # token buffer ;;
- : token = IDENT "x1"

utop # token buffer ;;
- : token = EOF

2.3 Precisions

An Ocamllex rule can be considered as a function because ocamllex generates a function with
the same name. This function is recursive as we have seen in the previous example (token calls
token when eliminating spaces and newlines).
You can add parameters to a rule. We will illustrate it with a small example that probably would
not require the use of Ocamllex. The objective is to write an automaton to count the occurrences of
the character 'a' in a string. For this, we define a rule which has as parameter (value) containing
the number of 'a' already met. When the automaton encounters a 'a', it calls itself recursively
with a value incremented by 1 (line 3). When the string ends, the automaton returns the number
of 'a' (line 4). The desired function is then defined in the postlude reusing the rule (line 6).

1 rule count value = parse

IMT Atlantique 6 1st semester 2019

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

2 | [^'a']* { count value lexbuf }
3 | 'a' { count (value + 1) lexbuf }
4 | eof { value }
5 {
6 let count_a s = let buffer = Lexing.from_string s in count 0 buffer
7 }

Once compiled by ocamllex and loaded in the interpreter, the function can be tested.
utop # #use "count_a.ml" ;;

val count : int -> Lexing.lexbuf -> int = <fun>

val count_a : string -> int = <fun>

utop # count_a "eratatata" ;;
- : int = 4

B ocamlbuild
Now and for the rest of the UV, you should use ocamlbuild to compile and directly produce an
executable file. You need to add the following line to bind the definition of the main function
(here compile)4.
let _ = Arg.parse [] compile ""

3 Parsing with Menhir

The Menhir files use the extension .mly and have the following form:
%{
(∗ OCaml code ∗)

%}
(∗ Declarations of symbols ∗)

%%
(∗ Rules ∗)

%%
(∗ OCaml code ∗)

The main structure is similar to Ocamllex with a prelude and a postlude, some declarations and
a set of rules.

3.1 The declarations

The following declarations are possible:

• %token (< type >)? symbol1 ... symboln: defines the n symbols as lexical tokens. They are
added as constructors to the type token. When a type is given the n constructors take it
as argument. By consequences the lexer does not need to define the token type anymore,
instead it uses the parser’s one.

4For more details, do not hesitate to consult the manual section on the module Arg.

IMT Atlantique 7 1st semester 2019

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

• %start (< type >)? symbol1 ... symboln: defines the n symbols as entry points. A parsing
function of the same name is defined for each symbol. The symbol must be a non terminal
left part of a rule. The return type of this function can be given simultaneously or using the
following declaration.

• %type (< type >)? symbol1 ... symboln: defines the return types of the actions corresponding
to the n symbols. Each symbol must be a non terminal left part of a rule. These type
declarations are only mandatories for entry points.

• the priority and associativity of symbols:

– %left symbol1 ... symboln

– %right symbol1 ... symboln

– %nonassoc symbol1 ... symboln

The name specifies the associativity and the order of appearance in the file specifies the
priority. The first defined has the weakest priority. When on the same line they share
associativity and priority. Associativity and priority are used when there is a conflict. For
example, the expressions 1 + 2 ∗ 3 can be recognized (depending on the defined rules) as
(1 + 2) ∗ 3 or 1 + (2 ∗ 3). First, the parser use priority. Here for example, if ∗ has a higher
priority than +, the second form is adopted. In case of similar priority, it uses associativity.
The first term corresponds to left and the second to right. If the symbol is declared non
associative, a parsing error is raised. Often binary operators are left associative and unary
ones are right associative.

3.2 The rules

The rules follow the syntax:
nonterminal:
| symbol ... symbol { (∗ semantic action ∗) }
| ...
| symbol ... symbol { (∗ semantic action ∗) }

A semantic action contains OCaml code that builds and returns the semantic value of the non-
terminal in the corresponding case. This semantic action can use the semantic value of all terminals
and non-terminals that appear in the corresponding production. Two ways to access their value
are available: (1) by naming these symbols in production or (2) by position $1 for the first symbol
and up to $9. The second possibility is deprecated because it creates a strong coupling between
action and production (if a symbol is moved, the action code must be changed). In general, the
semantic action consists in constructing the node of the Abstract Syntax Tree associated with the
recognized sentence.
To demonstrate how Menhir works, we’re going to examine an example in details. Let’s look at a
parser for Expr.

1 %{
2 open ExprAst
3 open BinOp
4 %}

IMT Atlantique 8 1st semester 2019

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

5 %token EOF PLUS MINUS TIMES DIV MOD LPAR RPAR
6 %token <int> INT
7 %token <string> IDENT
8 %start < ExprAst.expression > expression
9 %left PLUS MINUS

10 %left TIMES DIV MOD
11 %right UMINUS
12 %%
13 expression:
14 | e=expr EOF { e }
15 expr:
16 | MINUS e=expr %prec UMINUS { Uminus e }
17 | e1=expr o=bop e2=expr { Binop(o,e1,e2) }
18 | e=simple_expr { e }
19 simple_expr:
20 | LPAR e=expr RPAR { e }
21 | id=IDENT { Var id }
22 | i=INT { Const i }
23 %inline bop:
24 | MINUS { Bsub }
25 | PLUS { Badd }
26 | TIMES { Bmul }
27 | DIV { Bdiv }
28 | MOD { Bmod }
29 %%

Lines 2 and 3 open modules to make them available inside actions. Lines 5 to 7 define the various
tokens. The two last tokens INT and IDENT can carry information. More precisely, a token of
type INT will contain the corresponding integer and the token IDENT contains the string of the
identifier. Line 8 defines the only entry point: the non terminal expression, its type corresponds
to the AST defined for expressions. Lines 9 to 11 define priorities and associativities. UMINUS has
a higher priority than TIMES, DIV and MOD that have a higher priority than PLUS and MINUS. Notice
here that the symbol UMINUS is not defined using %token. Such a symbol will have to be used by
a %prec in a rule (here on line 16). Lines 13, 15 and 21 define the rules of derivation for three non
terminals. If we look in more details line 17, an expr can be derived as an expr followed by a bop
and followed by an expr. The result of the action is a term Binop collecting the content of these
three elements using variables.
When compiling this file, Menhir will produce an OCaml module of signature exprParser.mli
and of implementation exprParser.ml. This module defines:

• the type token:
type token =
| TIMES
| RPAR
| PLUS
| MOD
| MINUS
| LPAR

IMT Atlantique 9 1st semester 2019

Langages et logique – ELU 610 Lecture notes – Compilation with OCaml

| INT of (int)
| IDENT of (string)
| EOF
| DIV

• an exception for parsing errors Error

• a parsing function named expression of type (Lexing.lexbuf -> token) -> Lexing.lexbuf ->
exprAst.expression that takes as argument, the lexer, the input buffer and returns an AST
expression.

The lexer corresponds to the code already presented in section 2.2 without the definition of the
type token which is now defined by the parser.
Remark:

The signature does not include the prelude of the Menhir specification file. So any types that
the signature will contain must be fully qualified. (using the dot notation and the name of their
module). By consequence, all the types of entry points and the types parameterizing a token must
be fully qualified (as in line 8 above).

IMT Atlantique 10 1st semester 2019

	The tools
	Using Ocamllex
	The syntax of Ocamllex
	A first example
	Precisions

	Parsing with Menhir
	The declarations
	The rules

