
29/09/2016

TP4-6 – Discovering OCaml
Langages et logique – ELU 610

Objectives

At the end of the activity, you should be capable of:

• build simple functional OCaml modules;

• run OCaml programs from the interpreter;

• build and run OCaml programs from the command line;

• discover the rest of the language by yourselves.

Introduction

OCaml is a functional programming language. In other words, it is a programming language
where functions are first class values. Functions can be manipulated like any other kind of value:
passed as parameters to other functions, returned as result of a call to a function, stored in a data
structure, ...
OCaml is a language:

• statically typed by inference: the use of values and variables is verified at the time of
compilation; information of type does not need to be provided by the programmer, it is
computed by the compiler.

• offering parametric polymorphism: if a function does not explore the whole structure of one
of its arguments, it has a type not entirely determined (a variable type).

• whose allocations and deallocations of data in memory are automatically managed by a
garbage collector.

1

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

• including imperative features: it is possible to use imperative control structures and to
physically manipulate some values (arrays, references, ...). Imperative feature tend to use
side effects.

• providing a comprehensive mechanism of exceptions.

• which has an interpreter (ocaml), a virtual machine (ocamlrun), two compilers (one for
the virtual machine ocamlc and a native ocamlopt one) and development tools (execution
tracing, dependencies management, performance analysis, package deployment, testing, ...).

An OCaml program can be structured using two approaches: by modules or by classes in an object
oriented fashion. The choice between these two models of structuration offers a great flexibility
to the language. They are dual the modules facilitating the extension of the treatments and the
objects facilitating data extension. As part of the course, we will not explore the object aspects of
language. The reader interested by this aspect is referred to the referenced documents presented
below.
In ocaml, a module is a compilation unit that groups together data and code that are described
by an interface. The language integrates multiple notions that allow advanced manipulation of
modules (parametric modules, functors, ...). When we will practice, we will limit ourselves to
simple modules e.g. separate files. This document will describe in more details the way to build
a module in the section B.2.
The associated course mainly focused on functional concepts which you probably don’t know. Our
objective, here, is to practice this functional part of OCaml. In annex A, you will find a partially
redacted version of what has been seen during the course. To discover the objects and imperative
parts of OCaml, you can consult:

• The official manual http://caml.inria.fr/pub/docs/manual-ocaml

• The OCaml portal http://ocaml.org

• A page of this portal containing numerous links to books on OCaml: http://ocaml.org/
learn/books.html. Among these books, I would advise mostly to read:

– https://realworldocaml.org

– A french teaching book: http://caml.inria.fr/pub/docs/oreilly-book/index.
html

We will also use opam the OCaml package manager (https://opam.ocaml.org). This tool allows
downloading, compiling and installing libraries for OCaml. It installs software in the directory
.opam1 in your root directory and adds access to these libraries to your environment2.
The various basic tools and opam are installed in the lab classes.

1 An introduction

In this section, we recommend using the interpreter (sometimes referred to as an interaction loop).
1Before the first use of opam, opam init, which is responsible for creating the directory .opam.
2The command eval ‘opam config env‘ is responsible for this initialization. If you want to run it for each

new terminal, put it in your .profile.perso.

IMT Atlantique 2 1st semester 2019

http://caml.inria.fr/pub/docs/manual-ocaml
http://ocaml.org
http://ocaml.org/learn/books.html
http://ocaml.org/learn/books.html
https://realworldocaml.org
http://caml.inria.fr/pub/docs/oreilly-book/index.html
http://caml.inria.fr/pub/docs/oreilly-book/index.html
https://opam.ocaml.org

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

Figure 1: utop interpreter

1.1 The interpreter

The ocaml interpreter is started by the command ocaml. We are going to use a more user-friendly
version of this interpreter: utop3. Therefore, we need to install it opam install utop.
The figure 1 contains a screenshot of utop when launching it. The prompt of the interpreter is the
character #. Once this character is displayed, the interpreter reads the data input until meeting ;;.
The sentences can be expressions (which give a result) or definitions that introduce new variables,
types, ... (e.g. let statement). The interpreter reacts to an expression by displaying the result of
its evaluation preceded by its type and to a definition by giving the type of the defined value and
possibly its value. For example :

1+2*3 ;;
- : int = 7

let pi = 4.0 *. atan 1.0 ;;
val pi : float = 3.14159265358979312

let square x = x *. x ;;
val square : float -> float = <fun>

square(sin pi) +. square(cos pi) ;;
- : float = 1
Directives allow you to interact with the interaction loop. They are distinguished from OCaml
expressions because they begin with a sharp #. For example, to leave the loop use the #quit
directive (followed by ;;). Many directives are available, some specific to utop other inherited
from the standard interpreter. Among those we will use:

• #use which loads and interprets the contents of a file,

• #directory to add a file search directory,
3https://github.com/diml/utop

IMT Atlantique 3 1st semester 2019

https://github.com/diml/utop

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

• #cd to change the current directory of the interpreter,

• #load to load a compiled file,

• #trace / untrace to obtain / suspend traces of calls to the target function,

• ... see http://caml.inria.fr/pub/docs/manual-ocaml/toplevel.html.

A line management mechanism is offered by utop and follows bindings of bash 4, you can modify
and move forward / backward through the history (the arrows to go up and go down). Finally,
utop offers a mechanism for completion, its lower bar dynamically displays the current possible
completions, complete by using its first proposal using the tab key.

1.2 Functions

Exercise 1
The map function takes a function f and a list l. It must return the list of the results of applying
f to elements of l.

BQuestion 1.1:
Without using the interpreter give the type of map.

BQuestion 1.2:
Propose an implementation of map and check its type.

Exercise 2
Same exercise with the function iterate which takes an integer n and a function f and returns
fn5.

2 More OCaml

Exercise 3 (Binary trees)
BQuestion 3.1:
Propose a type for binary trees.

BQuestion 3.2:
Use this type to realize a binary search tree for integers. Such a tree has the following
invariant: for every node, the values contained in all the left sub-tree are smaller to
the one of the node and the values contained in all the right sub-tree are larger.
For this define a function add that add an integer in a binary search tree.

4See # utop_bindings for the shortcuts of utop.
5means f(f(. . . f()))

IMT Atlantique 4 1st semester 2019

http://caml.inria.fr/pub/docs/manual-ocaml/toplevel.html

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

BQuestion 3.3:
Use the previously defined function to implement a function sorting list of integers.

Exercise 4 (Card deck)
BQuestion 4.1:
Propose a type to represent the cards of an usual card game.

BQuestion 4.2:
Define a function all_the_cards which takes a color as parameter and builds a list
containing all the cards of the given color.

BQuestion 4.3:
Define a function string_of_cards which converts a card to a string representing its
value and color.

3 A functional data structure

Exercise 5 (List with position)
The idea of this exercise is to implement (efficiently) a notion of list with a position. It is a
stateful data structure that maintain a list of elements together with a current position in this list
of elements.
So for example, if we suppose that the elements of the list are integers. Here is such a list 117 34
55 3 where the position is indicated by the blue box.
A naive implementation could be done by a pair composed of the list of elements and an integer
storing the position. It would not be efficient to access the current element as we would have to
find it every time. In a language with pointers (such as Java or C), such a list would be a pair
formed of the list of elements and a pointer to the current element. The complexity of accessing
the current element would then be in O(1). In a functional language, we do not have pointers6.
The trick here is to see that such a list is a triple when not empty: the list of the elements before, the
current element and the list of the elements after. Using our exemple, we have [117;34],55,[3].
The accessing current element is trivial.

BQuestion 5.1:
Propose a type, a constructor function to create such lists and a current function that
returns the current element. The list must polymorphic. The constructor function
could, for example, take a list of elements and initialize the position to the first
element of this list.
In order to be able to test your implementation do not hesitate to define other useful
functions.

6They exist in OCaml but we will stick to a pure functional style.

IMT Atlantique 5 1st semester 2019

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

BQuestion 5.2:
What is the cost of moving the position one element right? What is the cost of
moving the position one element left? Could we do better?
Define efficient move_left, move_right, add_left and add_right functions (it may re-
quire to modify the code already done).

BQuestion 5.3:
Define a iter and a map function for your list.

4 Formal calculus

This section contain a longer problem. The objective is to build a simple calculator of arithmetic
expressions. un évaluateur

Exercise 6 (Formal calculus)
BQuestion 6.1:
Propose a type to describe simple expressions containing floating point numbers and
the four basic operators (+, −, ∗, /).

BQuestion 6.2:
Define a function eval to evaluate an expression.

BQuestion 6.3:
Extends the type of expression to make it possible to use variables. A variable is a
string that appears in an expression. During evaluation, the variables will be given
a value.

BQuestion 6.4:
Modify the fonction eval to receive an environment. An environment is an association
list associating values to variables. Meeting a variables not defined in the environment
should lead to an error.

BQuestion 6.5:
Write a function string_of_expr.

BQuestion 6.6:
Define a function derive qui that derive an expression with respect to one variable
given as argument.

BQuestion 6.7:
Propose a function simplify that simplifies an expression using the following rules:

−0 = 0
∀e e + 0 = 0 + e = e
∀e e× 0 = 0× e = 0
∀e e× 1 = 1× e = e

IMT Atlantique 6 1st semester 2019

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

A Basics

OCaml comments are contained between (* ... *). Comments may be nested inside other com-
ments.

A.1 Types

In OCaml, the primitive types are:

• unit which contain a unique value (),

• integers (int) with their usual operations (+,-,*, /, mod, int_of_float, ...),

• floating point numbers (float) with their usual operations (+.,-.,*., /., **, float_of_int,
...),

• booleans false and true (bool) with classical logical operators and usual comparison
operators (=, <>, <, >, <=, >=, not, &&, ||),

• characters (char) between ’ with the usual special characters (\t, \n, ...),

• strings (string) between " with concatenation ^ ; all previous types may be converted to
strings by function of the form string_of_type ; we can get the character at position i of a
string by tab.[i]7,

• tuples (_ * _ * _) the separator character is ,, pairs have fst and snd operators ; larger
tuples must be destructured using pattern matching,

• lists (_ list) between [] with the separator character ;, the list constructor is :: that add
an element to the head of a list, there exists also an operator for concatenation @.

For more information, please consult the OCaml manual and more precisely the part on the library
(part IV) of https://caml.inria.fr/pub/docs/manual-ocaml-4.05/.

A.2 Control structure

Usual imperative control structure exists in OCaml: choice if then else, sequence ;, blocks
begin ... end, iterations for i = e1 to e2 do e3 done and while e1 do e2 done.
The main control structure is pattern matching. A pattern is a partially constructed value con-
taining holes (in fact variables not yet defined). Matching is then an operation making it possible
to compare a pattern with a value, if the two entities match (i.e. have the same form), the holes
(the free variables) are filled by the corresponding sub-values (they are defined). The process is
comparable to regular expressions.
The matching may fail, in which case the following case is used or an exception is raised if no
other case is available (see example 2, below). Notice that the interpreter (and compiler) emits a
warning if a pattern matching is incomplete and may therefore fail.

7Note that OCaml is changing to an immutable string type, you may encounter code modifying strings but we
are not going to do this. If you need mutable strings use the type bytes.

IMT Atlantique 7 1st semester 2019

https://caml.inria.fr/pub/docs/manual-ocaml-4.05/

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

For example:
let a = ([2;3;4;5],1) ;;
val a : int list * int = ([2; 3; 4; 5], 1)

match a with (c,1) -> c ;;
Warning: this pattern-matching is not exhaustive. Here is an example of a
value that is not matched: (_, 0)
- : int list = [2; 3; 4; 5]

match a with (c,2) -> c ;;
Warning: this pattern-matching is not exhaustive. Here is an example of a
value that is not matched: (_, 0)
Exception: Match_failure ("", 1, 0).

match a with (2::c,1) -> c ;;
Warning: this pattern-matching is not exhaustive. Here is an example of a
value that is not matched: ([], _)
- : int list = [3; 4; 5]
A (free) variable can only occur once in the pattern. There exists a "hole" pattern _ match
everything but not binding the resulting data to a variable.
Pattern matching can be done by match or function. It is also the basics structure for definition
functions. Lastly, the handling blocks for exceptions use also pattern matching. For example, an
insertion sort can be implemented like follows.
First, there is a function to insert a value in a sorted list:
let rec insert elt lst =
match lst with
[] -> [elt]

| h::t -> if elt <= h then elt::lst else h::(insert elt t)

Then it is used to sort any list:
let rec sort lst =
match lst with
[] -> []

| h::t -> insert h (sort t)

The value returned by a function is the value of its last expression.
This function also illustrates polymorphism. Indeed, as it does not use the structure of the
elements, it is independant of it and has the following type: ’a list -> ’a list where ’a is a
type variable.
As in all the functional languages, the approach to iterate is to use recursion. Definitions use
let rec. During this courses, we forget about imperative control structure and focus on functional
constructs. It will be a constant requirements for all the codes you produce.
Notice also that generally, in OCaml, data structure are immutable. Once a list has been defined
one cannot modify its content. You only can build new lists.

IMT Atlantique 8 1st semester 2019

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

A.3 Functions

In OCaml, a function is a first class value. It can be given as argument to another function. For
example, it is possible to define a function iter that wait a function f and a list l and applies
sequentially f to all elements of l.
let rec iter f l =
match l with
| [] -> ()
| h::t -> f h; iter f t

This function has type (’a -> ’b) -> ’a list -> unit. It can be used to prints the elements of a
list of strings, the printing function being print_string:

iter print_string ["a";"b";"c";"n"] ;;
abc
- : unit = ()
In OCaml, one can partially apply functions. It consists in providing less argument that required
during the call. The result is then another function expecting the remaining arguments:

let print_list = iter print_string ;;
val print_list : string list -> unit = <fun>

print_list ["a";"b";"c";"n"] ;;
abc
- : unit = ()

B More OCaml

B.1 Compilation

OCaml programs can also be compiled. In a file, all related definitions and expressions are collected
to define a module (the ;; is not required anymore). A signature can also be defined in a mli file
selecting which declarations are exported. This file is then compiled using the command ocamlc
(or ocamlopt). This operation needs two steps:

1. compilation of all required modules ocamlc -c ...

• compile first the signature if there one; it produces a cmi

• then compile the module; it produces a cmi if there is no signature (mli file)

2. linking all the obtain compiled artefacts to produce an executable ocamlc -o prog ...

The compiled files (or modules) use file extension cmo (or cmx). The result of linking is a
bytecode file executable by the virtual machine (ocamlrun). By default, this file begins by
#!/usr/bin/ocamlrun8 which makes it executable on most systems without explicitly launch-
ing ocamlrun.

8the path may vary!

IMT Atlantique 9 1st semester 2019

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

The distribution of OCaml contains an automatic building tool ocamlbuild. A run of ocamlbuild
has a target provided by the user. It analyzes this target and its dependencies to find all com-
pilation operations required. It then compiles all the needed modules in the right order in the
sub-directory _build of the current directory. It produces an error if it finds compilation artefacts
outside the _build directory! They must be removed. There exists two kind of targets depending
on the compiler one wants to use ocamlc (.byte) or ocamlopt (.native). For example:

ocamlbuild -libs unix main.native

compile the file main.ml and all its dependencies with ocamlopt. It will also link the program
with the unix library and will produce an executable named main.native. Lastly, it will create
a symbolic link in the current directory to the produce executable.
The tool ocamlbuild can also run the built executable if one add -- followed by the command
line arguments.

ocamlbuild main.byte -- file.txt

launch all the compilation and then run the program main.byte passing it the parameter file.txt.
A configuration file enable a finer grain control on the builds (file _tags) and ocamlbuild includes
a plugin mechanism to support extensions (made in OCaml). The interested reader is invited to
read the documentation of the tool at https://github.com/ocaml/ocamlbuild/blob/master/
manual/manual.adoc.

B.2 Modules

A module is a set of definitions of types, values, functions, exceptions, ...). It has an signature
and a structure. The signature defines the (external) interface of the module. Each of these public
entities can be reused by other modules. The structure must define the entities declared in the
signature (with compatible structure). The entities of the structure that are not declared in the
signature can not be used by other modules. This makes it possible to abstract types (i.e. not
manipulable see section B.4).
In its simplest embodiment, a module is a file containing the declarations of the module (extension
ml). Its signature shall then be in a file with the same name and extension mli. In this case, the
name of the module corresponds to the name of the file capitalized.
When compiling, the signature is compiled into a file of extension cmi. If no signature is provided,
all entities of the module (i.e. the file) are available (a cmi file is automatically generated).
In a program, the use of a value toto defined in another module Tutu must be prefixed by the
name of the module: Tutu.toto.
In fact, the modules are much more powerful than presented above, you can consult http://
caml.inria.fr/pub/docs/manual-ocaml/moduleexamples.html to read more.

B.3 Constructed types

In OCaml, it is possible to define new types (syntax type truc =). Theses types can be pa-
rameterized (syntax type ’var truc =). These new types are often aliases of already existing
types. All values of the model types are also of the alias type. Beware that if the alias is then

IMT Atlantique 10 1st semester 2019

https://github.com/ocaml/ocamlbuild/blob/master/manual/manual.adoc
https://github.com/ocaml/ocamlbuild/blob/master/manual/manual.adoc
http://caml.inria.fr/pub/docs/manual-ocaml/moduleexamples.html
http://caml.inria.fr/pub/docs/manual-ocaml/moduleexamples.html

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

abstracted the two types (the model and the alias) become incompatibles. For example, if you
declare type id = int and then hide the realization of id then id (which are integers) and int
(which are also integers) won’t be compatible.
One of the type constructor is the sum constructor which allow to define variants. Such a type
is the result of a definition of the following form:
type name =
| Name1 of t1
| Name2 of t2
| ...
| Namek of tk

This type contains all the values built with the (value) constructors Name1 to Namek9. Building
a new value of this type is done by Name1(toto) for example if toto is a value of type t1.
These types are then manipulated using pattern matching.
A sum type can be recursive when one of its sub-element as a type using the sum type. The type
list is an example of such a recursive sum type, it is defined by:
type ’a list =
| []
| :: of ’a * ’a list

Another sum types predefined in OCaml is the type option:
type ’a option =
| None
| Some of ’a

OCaml also has support to define records (named product types):
type ratio = { num: int; denum: int }

let add r1 r2 = { num = r1.num * r2.denum + r2.num * r1.denum; denum = r1.denum * r2.denum }

add {num=1; denum=3} {num=2; denum=5}

B.4 Type abstraction

One of the advantages of the concept of modules is the possibility of abstracting a type. Indeed,
it is possible to declare a new type (in a signature) without showing (and making accessible) its
realization. By example, the type ratio can be abstracted by the signature (file MyRatio.mli):
type ratio
val add : ratio -> ratio -> ratio
val num : ratio -> int
val denum : ratio -> int
val create : int -> int -> ratio
val print : ratio -> unit

9Beware capitalization!

IMT Atlantique 11 1st semester 2019

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

The realization of the module can the be in the file MyRatio.ml:
type ratio = { num: int; denum: int }

let add r1 r2 = { num = r1.num * r2.denum + r2.num * r1.denum; denum = r1.denum * r2.denum }

let num r = r.num
let denum r = r.denum

let create n d = { num = n; denum = d }

open Printf
let print r =
printf "%i/%i" r.num r.denum

The implementation of the type ratio is no more usable by other modules, the following:
let r = Ratio.create 1 1 in
print_int r.num

generate the following compile error:
File "UseRatioError.ml", line 2, characters 14-17:
Error: Unbound record field num

To use such an abstracted type, the external code must use the functions provided by the module
(the API):
let r1 = MyRatio.create 1 1
and r2 = MyRatio.create 1 2 in

MyRatio.print (MyRatio.add r1 r2);
print_newline ()

B.5 Exceptions

OCaml supports exceptions. An exception must be declared by the keyword exception, they can
be raised by raise and they are caught by the construction try ... with.
For example, the function head below that returns the head of a list may raise an exception when
it is given an empty list:
exception Empty_list

let head l =
match l with
| [] -> raise Empty_list
| hd :: tl -> hd

In the standard library of OCaml, functions are defined to manipulate a notion of dictionary (called
association list). The List module contains a function assoc that takes a key and association list
and returns the value associated with the key in the association list. If the key is not present in
the association list an exception Not_found is raised. Thus, writing a function name_of_digit
that converts a digit (not a number) to string of characters can be written like follows:

IMT Atlantique 12 1st semester 2019

Langages et logique – ELU 610 TP4-6 – Discovering OCaml

let name_of_digit digit =
try
List.assoc digit [0, "zero"; 1, "one"; 2, "two"; 3, "three"; 4, "four";

5, "five"; 6, "six"; 7, "seven"; 8, "eight"; 9, "nine"]
with Not_found ->
"not a digit"

The with part contain a pattern matching and the exception can also contain data.

IMT Atlantique 13 1st semester 2019

	An introduction
	The interpreter
	Functions

	More OCaml
	A functional data structure
	Formal calculus
	Basics
	Types
	Control structure
	Functions

	More OCaml
	Compilation
	Modules
	Constructed types
	Type abstraction
	Exceptions

