
29/09/2016

Lecture notes – Formal languages
Langages et logique – ELU 610

This document contains all the mathematical elements needed by the course. We will discuss
formal languages, syntax, semantics, and reasoning. The aim is to provide you with right back-
ground to understand the basics of languages and logics. In this context formal means charac-
terized mathematically. It often helps because then the reasoning relies on the form not on the
sense. Computation (preferably automated) can replace the subjectivity of human judgment and
intuition.
Formal approaches are needed to characterize the fundamental concepts of a domain and to
provide simple, precise and concise way to describe models. We use them to study foundations of
languages and their properties but also to verify properties and to implement safe mechanisms of
computation.
Formal approaches require discipline as they require the clarification of all assumptions and rea-
soning by using only explicitly and strictly a small set of (inference) rules.

Contents

1 Formal languages 2

2 Regular expressions 3

3 Finite automata 4

4 Grammar 9
4.1 Regular grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Context-free grammars (CFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Term algebra 15

6 Syntax 19

1



Langages et logique – ELU 610 Lecture notes – Formal languages

6.1 Concrete syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Giving meanings to syntactic objects 19

8 Transition systems 20

9 Inference rule and proof 21

References 26

1 Formal languages

Suppose we have a set A called the alphabet whose elements are called the symbols. A string (or
word) over A is a (finite) sequence1 of symbols of A. Its length is the number of elements of the
sequence, it is a natural number as the sequences are required to be finite. The set of strings (over
A) of length n is denoted An. The length of a string s is denoted |s|. Any element of An can be
written a1a2...an where each ai is an element of A. As usual, a1a2...an where for all ai are equals to
a a is denoted an. A specific string ε represents an empty sequence. It is the only element of the
set A0. The set of strings (over A) is defined by ⋃

n∈NA
n and is denoted A∗. This set is countably

infinite2 (there is a bijective function between A∗ and N).
On A∗, one may define the concatenation operator ·. It takes two strings s1 = a1a2...an1 and
s2 = b1b2...bn2 and produces the string s1 · s2 = a1a2...an1b1b2...bn2 .

The set A∗ equipped with the operator · and the element ε, denoted (A∗, ·, ε), forms a monoid:
· is associative (s1 · s2) · s3 = s1 · (s2 · s3) and ε is a neutral element for ·, ε · s = s · ε = ε.

Theorem 1

A∗ is called the free monoid over A.

A formal language L over an alphabet A is a subset of the free monoid over A, L ⊂ A∗.

Definition 1, Formal language

As such languages are sets, therefore, you can use the usual set operators on languages (union,
intersection, complement). We can also reuse the mathematical practice of defining sets by ex-
tension (by the list of its elements) or intensionally (by a property of its elements). For example,
if A = {a, b}:

• L1 = {a, b, aa, aab}

• L2 = {s ∈ A∗ | |s| is even}

• L3 = {anbn | n ∈ N}
1an ordered set
2Following the axiom of choice, it is possible to prove that any countable union of finite sets is countable.
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• L4 = {s ∈ A∗ | |s|a = |s|b} where for any x of A and s of A∗, |s|x is the number of occurences
of x in s

• L5 = {ε}

• L6 = ∅, the empty language (notice that it is different from L5)

• L7 = L1 · L2 = {s ∈ A∗ | s = s1 · s2 ∧ s1 ∈ L1 ∧ s2 ∈ L2}, this construction defines the
concatenation of languages

• L8 = Ln1 = {s ∈ A∗ | s = s1 · ... · sn ∧ {s1, ..., sn} ⊂ Ln1}, we define L0 to be {ε}

• L9 = L∗1 = ⋃
n∈N Ln1 , this defines the Kleene closure

Remark. For any alphabet A, there exists a non countable infinite number of languages over A.
This result come from the Cantor theorem3. That’s a lot of languages...

Computer science focuses on finitely generated languages. In these languages, the alphabet is
finite and the language can be described by a finite set of information. But notice that they can
still be an infinite number of strings in the language.
The study and classification of languages is the formal language theory [1, 4]. It focuses on how
to define languages and (efficiently) recognize wether a string belongs to a language.
Consult http://en.wikipedia.org/wiki/Formal_language.

2 Regular expressions

Regular expression provides an easy to use language to specify formal languages.

A regular expression (RE) over an alphabet A is a well-formeda non empty string over A ∪
{∅, ε, (, ), |, *} (we suppose that A does not already contain the added symbols). Here, well-
formed means that opening and closing parentheses must be matched, | is n-ary infix operator
(it appears between each operand) and * is unary postfix one (it appears after its operand).

aWe will see later ways to formalize it.

Definition 2, Regular expression

Remark. It is important to notice the overloading of ∅ and ε that are used both for their string
meaning and as a special symbol for building RE (where they will be in blue).

For example, (a1|a2|...|an)* where {a1, ..., an} ⊂ A is a RE whereas )|) is not.
We can associate a language over A to each RE r over A denoted L(r) and defined by:

1. L(∅) = ∅

2. L(ε) = {ε}

3. L(a) = {a} for a ∈ A

4. L((r)) = L(r)

5. L(r1 · r2) = L(r1) · L(r2) for any r1 and r2

6. L(r1|...|rn) = L(r1) ∪ ... ∪ L(rn) for any
r1, ..., rn (n ≥ 2)

7. L(r*) = L(r)∗
3The cardinal of any set is strictly less that the one of the set of its subsets.
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For example:
L((a1|...|an)*) = L((a1|...|an))∗ = L(a1|...|an)∗ = (L(a1) ∪ ... ∪ L(an))∗

= ({a1} ∪ ... ∪ {an})∗ = {a1, ..., an}∗

We can extend the language of RE with the following symbols: +, ? and any integer all being
postfix unary operators defined as follows:

8. r+ = r · r* = r* · r

9. r? = ε|r

10. r0 = ε

11. rk+1 = r · rk

It does change the set of RE but makes it easier to write some RE.

A language L is regular if and only if there exists a RE r such that L = L(r).

Definition 3, Regular language

Defining language by regular expression is efficient but limited. There exists a lot of interesting
languages that are not regular! For example, {anbn, n > 0} is not regular and it is useful for
example to ensure that there is as much closing parentheses as opening ones in a regular expression
(here a = ( and b = )).
We will see in the compilation part of the course that regular expressions fit well to define lexical
analysis that produces tokens from raw symbol strings.

3 Finite automata

Finite automata provide efficient way to check whether a string pertain to a given language.

A finite automaton (FA) is a quintuple (Σ, Q,∆, I, F ) where:

• Σ is the alphabet, it is finite

• Q is the set of states, it is finite

• ∆ ⊂ Q× (Σ ∪ {ε})×Q is the transition relation, (q, x, q′) ∈ ∆ is denoted q x−→∆ q′a

• I ⊂ Q is the set of initial states

• F ⊂ Q is the set of final states

Sometimes, such an automaton is called ε-NFA (for non-deterministic).
aThe ∆ under the arrow may be dropped if it can be deduced from the context.

Definition 4, Finite automaton

An automaton may be represented graphically as a graph where the vertices represent the states
and the edges, the transitions. Vertices representing an initial (resp. final) state are marked with
an incoming edge without label (resp. double circle). The left part of the figure 1 illustrates this
representation called a transition diagram.
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1 2 3 4
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Figure 1: Transition diagram and transition table of FA

The automaton may also be defined by its transition table as in the right part of figure 1, where
lines represent states and columns transitions on a symbol. The first column contains the list of
states, the final ones are underlined and the initial ones are marked by an arrow.

Remark. Again, ε is overloaded both for the empty string and as a special symbol for empty
transition (called ε-transition). The reuse of the same symbol aims at stressing their similarity of
meaning because an ε-transition does not “read” anything.

A state q such that {q′ ∈ Q | ∃x ∈ Σ,∆(q, x, q′)} ⊂ {q} is called a sink. If this set, sometimes
called next(q), is empty the state is called stuck.

Two transitions q1
x1−→ q′1 and q2

x2−→ q′2 are consecutive iffa q′1 = q2. A path is a finite sequence
of consecutive transitions. A path is initial (resp. final) if it starts (resp. ends) in an initial
(resp. final) state. It is accepting, iff it is both initial and final. A state q′ is accessible from a
state q iff there exists a path from q to q′.

aiff means if and only if

Definition 5

When we do not care about the intermediary states, a path q0
x1−→ q1, ..., qn−1

xn−→ qn is denoted
q0

x1...xn−−−−→ qn. Keep in mind that x1...xn is a string on Σ ∪ {ε}, it is called the label of the path.
If s is an element of (Σ∪{ε})∗, it can be written either εk0 or εk0a1ε

k1 ...anε
kn with {a1, ..., an} ⊂ Σ

and ∀i ∈ J0..nK, ki ∈ N. We define s
Σ
to be ε in the first case and the subsequence a1...an of s

containing only the elements of Σ in the same order in the second case.
We write q0

s=⇒ qn when s is a string over Σ and there exists a path q0
s′−→ qn where s′ is a string

over Σ ∪ {ε} such that s = s′
Σ
.

A string s of Σ∗ is accepted by a FA A = (Σ, Q,∆, I, F ) if and only if there exists an accepting
path labelled by s′ with s′

Σ
= s otherwise it is rejected.

The language recognized by A, denoted L(A), is the set of its accepted strings. Two automata
are equivalent iff they recognize the same language. It is denoted ≡L.

Definition 6

Let’s define the function accessible from ℘(Q) to ℘(Q) that associates a set of states to the set of
the accessible states from its elements (accessible(P ) = {q′ ∈ Q | ∃q ∈ P, ∃s ∈ Σ∗, q s−→ q′}). The
dual notion is that of the language recognized when starting a state q: Lq = L((Σ, Q,∆, {q}, F )).
Clearly, Lq is empty if there is no path from q to a final state.
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Remark. Equivalent automaton may have very different form. For example, the empty au-
tomaton A∅ = (Σ,∅,∅,∅,∅)4 recognizes no string as any automaton (Σ, Q,∆, I, F ) where
accessible(I) ∩ F is empty5 (Q and ∆ may be large). They are all equivalent and recognize
the empty language.

When using automaton to recognize strings, some states of the automaton may not be of interest.
First, the states that cannot be reached from an initial state (it is not in accessible(I)). Second
any state q that has no accessible final state, i.e. accessible({q}) ∩ F = ∅ (the string cannot
be recognized anymore). An automaton is accessible (resp. coaccessible) iff all its states are
accessible from an initial state (resp. have an accessible final state), i.e. accessible(I) = Q (resp.
∀q∈Q, accessible({q}) ∩ F 6= ∅). It is a trim if it is both accessible and coaccessible. Intuitively,
a trim does not contain any useless state.
Any FA A = (Σ, Q,∆, I, F ) can be trimmed to an automaton T (A) that is a trim. Let’s define
Qa,c as the subset of Q whose elements are accessible from an initial state and have an accessible
final state, i.e. Qa,c = {q ∈ accessible(I) | accessible({q}) ∩ F 6= ∅}. We define T (A) by
(Σ, Qa,c,∆ ∩ (, Qa,c × Σ×, Qa,c), I ∩Qa,c, F ∩Qa,c). It is easy to prove that T (A) is a trim and is
equivalent to A (the accepting paths of A are exactly the accepting paths of T (A)).
A FA A = (Σ, Q,∆, I, F ) is complete iff for all state q and symbol a, ∆(q, a) = {q′ ∈ Q | q a−→ q′}
is not empty. It is often convenient to complete a FA. Suppose that A is not complete. Let’s
define a new state • /∈ Q and a new transition relation ∆• = ∆ ∪ {(q, a, •) | a ∈ Σ ∧ ∆(q, a) =
∅} ∪ {(•, a, •) | a ∈ Σ}. The automaton C(A) = (Σ, Q ∪ {•},∆•, I, F ) is clearly complete and it
is easy to prove that it is equivalent to A. If A is complete, we define C(A) to be A.
Notice that an automaton may be (1) a complete trim, (2) a trim not complete whose completion
is not a trim and (3) complete but not a trim and trimming it removes completness:

(1) ({a, b}, {q0, q1}, {q0
a−→ q1, q0

b−→ q0, q1
a−→ q1, q1

b−→ q0}, {q0}, {q1})
(2) ({a, b}, {q0, q1}, {q0

a−→ q1}, {q0}, {q1})
(3) ({a, b}, {q0, q1}, {q0

a−→ q1, q0
b−→ q0, q1

a−→ q1, q1
b−→ q1}, {q0}, {q0})

But, we can get a small complete automaton out of any FA by first trimming it and then completing
it. The result is a quasi-trim where all states are accessible and all but possibly one states have
an accessible final state (the • state if it is added by C). More precisely, if the number of states of
an automaton A is denoted |A|, then |A| ≤ |C(T (A))| ≤ |A|+ 1.

A language L is recognizable if and only if there exists a FA A such that L = L(A).

Definition 7, Recognizable language

For any FA A = (Σ, Q,∆, I, F ) let’s define the FA I(A) = (Σ, Q ∪ {q0},∆′, {q0}, F ) where
q0 /∈ Q and the transition function is extended by transitions ε from q0 to all elements of I, i.e.
∆′ = ∆ ∪ {(q0, ε, x) | x ∈ I}. It is easy to prove that A ≡L I(A). Some authors constrain the
definition of FA to have a unique initial state. It can also be used to suppose that there exists an
initial state.

4Some authors do not accept such empty automaton while adding them do not add complexity...
5In particular, this is true if either F or I are empty.
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A FA (Σ, Q,∆, I, F ) is deterministic (DFA) iff:

1. I is a singleton

2. there is no transition on the empty string, {q ∈ Q | ∃q′ ∈ Q, q ε−→ q′} = ∅

3. for all q ∈ Q and all a ∈ Σ, {q′ ∈ Q | q a−→ q′} is a singleton

The DFA is denoted (Σ, Q, δ, q0, F ) with I = {q0}, ∀q ∈ Q, a ∈ Σ, {q′ ∈ Q | q a−→ q′} =
{δ(q, a)}.

Definition 8, Deterministic finite automaton

Notice that a DFA cannot have an empty set of states. So trimming a DFA may lead to the empty
FA which is not considered a DFA. This happens when A has no accessible final state.

For every finite non empty automaton A there exists an equivalent deterministic automaton
D(A).

Theorem 2

Proof. If A = (Σ, Q,∆, I, F ), let’s define D(A) = (Σ, ℘(Q), δ, ID, FD) with
ID = I ∪ {q ∈ Q | ∃i ∈ I, n ≥ 1, i εn−→ q}
FD = {P ⊂ Q | P ∩ F 6= ∅}
δ(P, a) = {q ∈ Q | ∃p ∈ P, p a=⇒ q}

D(A) is clearly deterministic. Proving it recognizes the same language as A must be done by
double inclusion.

• L(A) ⊂ L(D(A)): if ε is in L(A) then an ε-transition goes from an initial state to a final
state hence a final state is in ID making it final for A′. Suppose s = a1...an is recognized
by A, there exists an accepting path q0

a1=⇒ q1...qn−1
an=⇒ qn. Then q0 is in I. Let’s show

by induction on n that there also exists a path I a1−→
δ
P1...Pn−1

an−→
δ
Pn in D(A). (n = 1) as

q0
a1=⇒ q1, I a1−→

δ
P1 where P1 is δ(I, a1) = {q ∈ Q | ∃p ∈ I, p a1=⇒ q} that contains at least

q1. (n−1 ⇒ n) suppose I a1−→
δ
P1...Pn−2

an−1−−−→
δ

Pn−1 exists with qn−1 ∈ Pn−1, as qn−1
an=⇒ qn,

Pn−1
an−→ Pn where Pn is δ(Pn−1, an) = {q ∈ Q | ∃p ∈ Pn−1, p

an=⇒ q} that contains at least
qn. Furthermore, as qn is final, Pn ∩ F is not empty which makes Pn final in D(A) meaning
s is accepted by D(A).

• L(D(A)) ⊂ L(A) conversely if ε is in L(D(A)) then ID ∈ FD meaning there exists a q in
ID ∩ F , so there exists i ∈ I such that i ε=⇒ q meaning ε ∈ L(A). Suppose s = a1...an
is recognized by D(A) there exists an accepting path P0

a1−→
δ

P1...Pn−1
an−→
δ

Pn (P0 = I).
By definition Pn ∩ F is not empty, let’s choose qn in it. As Pn−1

an−→
δ

Pn, Pn = {q ∈ Q |
∃p ∈ Pn−1, p

an=⇒ q} which means that there exists a qn−1 ∈ Pn−1 such that qn−1
an=⇒ qn

(qn−1
an−→
δ

qn). The construction can be repeated until q0, giving us a path q0
a1...an====⇒ qn

where qn is in F and q0 is in I.
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The definition of D(A) in the proof is called the subset construction, it gives an algorithm to
determinize a NFA. It has been proved that this process of determinization is optimal. Notice
that the resulting DFA can be much larger than the FA. Indeed, the size of the power set of a
finite set of size n is 2n. The complexity of the determinization of A is therefore O(2|A|).
The two kinds of automaton are useful. Producing a DFA is hard (typically the construction is in
O(|A|3) but may in the worst case reach O(|A|22|A|)) and often results in a large automaton but
gives an efficient way of recognizing a strings s in O(|s|) (there is a unique path). Producing a
NFA is much easier (construction in O(|A|)) and the automaton is much smaller but using it for
recognizing strings is much less efficient as one has to follow all paths resulting in a complexity of
O(|s| × |A|). So if an automaton is going to be used several times to recognize strings the cost of
its determinization can be amortized.
A string s distinguish two states q1 and q2 of a DFA iff either there is a path from q1 labeled s to
a final state and that is not true for q2 or the situation is reversed. Two states are distinguishable
if there exists a string that distinguish them.
The Nerode equivalence is defined as the inverse of distinguishability. Let q1 and q2 be two states
of a DFA, q1 ∼ q2 if and only if for all strings s, q1

s−→ q′1 and q2
s−→ q′2 then q′1 ∈ F ⇔ q′2 ∈ F .

Clearly, q1 ∼ q2 is equivalent to Lq1 = Lq2 and if q1 ∼ q2 then q1 is final iff q2 is final (both language
either contains the empty string or not). If furthermore the state q is accessible (q0

sq−→ q) then
Lq = {s ∈ Σ∗ | sq · s ∈ L}6. Lastly, if q1 ∼ q2, for all string s, either there exists q′1 such that
q1

s−→ q′1 and there must be a q′2 with q2
s−→ q′2 and q′1 ∼ q′2 or both q1 6

s−→ and q2 6
s−→ (otherwise there

would be a string starting by s distinguishing q1 and q2).
Suppose A = (Σ, Q, δ, q0, F ), let’s define M(A) = (Q/ ∼, δ∼, [q0]∼, F/ ∼) with δ∼([q]∼, a) =
[δ(q, a)]∼. δ∼ is a well defined function because if [q1]∼ = [q2]∼ then q1 ∼ q2 and following a
must give the same result (see above) so either δ(q1, a) exists and then δ(q1, a) ∼ δ(q2, a) or both
do not exists and δ∼ is also undefined. Notice that if the DFA is complete then δ∼ is always
defined and M(A) is therefore complete.

Let A be a trim DFA then M(A) is a minimala automaton equivalent to A.
aIt has less state than any other equivalent automata.

Theorem 3

You can consult [4, chapter 4, section 4.4] for a proof.
It is possible to combine the various transformations presented above. The usual chaining being
C(M(T (D(A)))) to get a complete minimal DFA. Notice that it may not be minimal if the last
transformation needs to add a sink state.

The regular class of language is exactly the recognizable class.

Theorem 4, Kleene

The proof is done in [4, chapter 3] by providing algorithm to build a FA out of a RE and conversely
to produce a RE from a DFA. The idea behind RE to FA is summarized in figure 2 it relies on an
induction on the structure of RE.

6Sometimes, denoted s−1
q L.

7We reproduce here the original automaton but we could also use A∅...
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base RE FA combined RE FA ( initial, final in sub-FA)

∅ 7 r1 · r2
r1 r2ε

ε
ε

r1|...|rn

r1

rn

.

..

ε

ε

ε

ε

a
a

r* rε ε

ε

ε

Figure 2: Producing a FA from a RE

The theorem means that it is easier to define a language using regular expressions and then convert
it to an automaton.

The regular language class is closed under union, intersection, complement, difference, star
and concatenation (i.e. any combination of regular languages using one of these operators is
a regular language).

Theorem 5

You can find all the proof in [4, chapter 4].

Any finite language is regular.

Theorem 6

Proof. Since regular languages are closed under union, it is sufficient to prove that any singleton
is regular. Suppose our alphabet is Σ, if L = {s}, with s = a1...an ∈ Σ∗, it is easy to see that it
is recognized by the DFA (Σ, {q0, ..., qn}, {q0

a1−→ q1, ..., qn−1
an−→ qn}, q0, {qn}).

The theorems 4 and 5 provides a concrete efficient mean of describing languages. For example, if
Lint =, we can define a language L as L((0|...|9)*)∪L((0|...|9)*.(0|...|9)*)∪L((+|-|*|/)*).

4 Grammar

A grammar is a quadruple (Σ, V, P, S) where:

• Σ is the alphabet of symbols called the terminals, it is finite

• V is the set of variables called the non-terminals, it is finite and Σ ∩ V = ∅

Definition 9, Grammar
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Class Name Production form Recognizer

Type-0 Recursively enumerable no restriction Turing Machine (TM)

Type-1 Context-sensitive (CSG)
αAβ → αγβ

A ∈ V , α, β, γ ∈ (Σ ∪ V )∗
Linear-bounded TM

Type-2 Context-free (CFG)
A→ γ

A ∈ V , γ ∈ (Σ ∪ V )∗
Pushdown Automaton
(PDA)

Type-3
(Left) Regular

A→ γ

A ∈ V , γ ∈ (V · Σ∗) ∪ Σ∗
Finite Automaton

(Right) Regular
A→ γ

A ∈ V , γ ∈ (Σ∗ · V ) ∪ Σ∗

Figure 3: chomsky hierarchy

• P ⊂ (Σ∪ V )∗ · V · (Σ∪ V )∗× (Σ∪ V )∗ is the set of productions, (α, β) is written α→ β

• S ∈ V is the axiom

The definition relies on the string concatenation operator but to simplify the rules the · operator
will be represented the same way than the symbol sequence, s1 · s2 is written s1s2.

Direct derivation of a grammar (Σ, V, P, S) is a relation on (Σ∪ V )∗ denoted s1 → s2 defined
when there exists a production α→ β in P such that s1 = xαy and s2 = xβy for any strings
x and y.
The relation derives is defined as the transitive closure of direct derivation. It is denoted, as
usual, →∗.
A direct derivation xαy → xβy is leftmost (resp. rightmost) if it is the leftmost (resp.
rightmost) non-terminal that is replaced: x (resp. y) contains only terminals. It is denoted
−→lm (resp. −→rm ).

Definition 10, Derivation

There can be derivations that are neither leftmost nor rightmost.

The language generated by a grammar G = (Σ, V, P, S) is the set of strings that be derived
from the axiom: L(G) = {s ∈ Σ∗ | S →∗ s}. Similarly to automata, grammars are equivalent
when they generate the same language, it is written using the same symbol ≡L.

Definition 11

The various grammars can be classified using their complexity, it is the chomsky hierarchy presented
in the table of figure 3. It is easy to see that Type-3 ( Type-2 ( Type-1 ( Type-0.
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Let G be a grammar (Σ, V, P, S). A derivation tree of G is a finite tree satisfying:

1. each leaf is labeled by a terminal (from Σ ∪ {ε}),

2. each other node is labeled by a non-terminal (from V ),

3. if a node, labeled B, has n children x1, ..., xn then a production B → x1...xn must
belong to P .

If the root of a derivation tree is A and its leafs ordered from left to right are a1, ..., an (it is
called the yield) then it corresponds to the derivation A→∗ a1...an.

Definition 12, Derivation tree

For every derivation tree, there is a unique leftmost and a unique rightmost derivation.

Theorem 7

Proof. The proof is done by an induction on the height of the derivation tree. We give the proof
for leftmost, the proof for rightmost is identical replacing left by right. (h = 1) the tree is built a
unique production A→ a1...an and as A is unique non-terminal of A then A −→lm a1...an and it is the
only leftmost derivation. (h=n) it is easy to see that the derivation tree must be of the following
form A→

a
1 ...

a
k where for each i ∈ J1..kK,

a
i is a derivation tree of height strictly smaller that

n whose root is Xi and yields si. By induction hypothesis, there exists a unique leftmost derivation
for each of these sub-trees (Xi −→lm

∗ si). Thus A −→lm X1...Xk −→lm
∗ s1X2...Xk −→lm

∗ ... −→lm
∗ s1...sk is

the unique leftmost derivation.

For a grammar, a string that can be generated by several (different) derivation trees is am-
biguous. A grammar with an ambiguous string is also said to be ambiguous. A language that
cannot be described by an unambiguous grammar is said to be inherently ambiguous. The set
of language having an unambiguous grammar is denoted U.

Definition 13, Ambiguous

For example, the grammar ({1, +}, {A, S}, {S → A,A → A+A | 1}, S) generates ambiguously
1+1+1 as either (1+1)+1 or 1+(1+1).
Often, we gave remove ambiguity changing but some grammars are inherently ambiguous meaning
that we cannot get rid of the ambiguities. For example, any grammar for the language {aibjck |
i = j ∨ j = k} is ambiguous. Intuitively, one derivation tree is obtained by “counting” the a and
b while another by “counting” the b and c.

4.1 Regular grammars

A right regular grammar is equivalent to a left regular grammar.

Theorem 8

IMT Atlantique 11 1st semester 2019



Langages et logique – ELU 610 Lecture notes – Formal languages

Proof. Suppose G = (Σ, V, P, S) is a right regular grammar. If the axiom S appear in the right
hand side of a production, we can transform G in (Σ, V ∪ {S0}, P ∪ {S0 → S}, S0) with S0 /∈ V .
So we can suppose that S does not appear in the right hand side of a production.
Then we define the grammar G′ = (Σ, V, P ′, S) with

P ′ = {B → Ax | A→ xB ∈ P,A ∈ V \ {S}, x ∈ Σ∗, B ∈ V }
∪ {B → x | S → xB ∈ P, x ∈ Σ∗, B ∈ V }
∪ {S → Ax | A→ x ∈ P,A ∈ V \ {S}, x ∈ Σ∗}
∪ {S → x | S → x ∈ P, x ∈ Σ∗}

G′ is left regular and is equivalent to G. Indeed a derivation for the string s ∈ Σ∗ has the
form S = A0 → x1A1 →∗ x1...xnAn = s with Ai → xi+1Ai+1 and An−1 → xn productions of
G such that Ai 6= S for i > 0. This derivation is possible if and only if a derivation of G′
is S = An → An−1xn →∗ A1x2...xn−1xn → x1...xn = s with the productions A1 → x1 and
Ai → Ai−1xi for i > 1.

The Type-3 class of language generated by a regular grammar is exactly the regular class
(recognized by FA).

Theorem 9

Proof. Suppose G = (Σ, V, P, S) is a right regular grammar (it is general enough by theorem 8).
We can build G′ = (Σ, V ′, P ′, S) an equivalent grammar such that for every production A→ x or
A→ xB of P ′, |x| = 18. Then the following FA recognizes L(G):

A = (Σ, V ∪ {q}, {A a−→ B | A→ aB ∈ P} ∪ {A a−→ q | A→ a ∈ P}, S, {q})

Conversely, suppose A = (Σ, Q, δ, q0, F ) is a FA. The following grammar is right regular and
generates L(A).

G = (Σ, Q, {q → aq′ | q a−→ q′ ∈ δ} ∪ {q → ε | q ∈ F}, q0)

4.2 Context-free grammars (CFG)

The previously seen language {anbn, n > 0} is not regular but is context-free (CF). It can be
generated by the following CFG ({a, b}, {S,A}, {S → A,A → aAb,A → ab}, S). Notice that a
CF language can only count two things. For example, {anbncn | n > 0} is not CF.

The Type-2 class of language generated by a CF grammar is closed by union, concatenation
and star.

Theorem 10

Proof. Suppose that G1 and G2 are defined by G1 = (Σ1, V1, P1, S1) and G2 = (Σ2, V2, P2, S2).

• G = (Σ1 ∪ Σ2, V1 ∪ V2 ∪ {S}, P1 ∪ P2 ∪ {S → S1, S → S2}, S) generates L(G1) ∪ L(G2).
8The idea is to replace any production A → x1...xn with n ≥ 2 using the following set of productions {A →

[x1][x2...xm], [x2...xm]→ [x2][x3...xm], ..., [xm−1xm]→ [xm−1][xm]} ∪ {[xi]→ xi | 1 ≤ i ≤ n}.
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• G = (Σ1 ∪ Σ2, V1 ∪ V2 ∪ {S}, P1 ∪ P2 ∪ {S → S1 · S2}, S) generates L(G1) · L(G2).

• G = (Σ1, V1 ∪ {S}, P1 ∪ {S → SS1, S → ε}, S) generates L(G1)∗.

A pushdown automaton (PDA) is a tuple A = (Σ,Γ, Q,∆, I, Z, F ) where:

• Σ is the input alphabet, it is finite

• Γ is the pushdown alphabet, it is finite and not empty

• Q is the set of states, it is finite

• ∆ ⊂ Q× Γ× (Σ∪ {ε})×Q× Γ∗ is the transition relation, the elements (q, z, x, q′, γ) of
∆ are written q x,z/γ−−−→ q′

• I ⊂ Q is the set of initial states

• Z ⊂ Γ is the set of initial pushdown symbols

• F ⊂ Q is the set of final states

For {q, z, x} from Q×Γ×(Σ∪{ε}), ∆(q, z, x) denotes the set {(q′, γ) ∈ Q×Γ∗ | (q, z, x, q′, γ) ∈
∆}.

Definition 14, Pushdown automaton

A configuration of a PDA is an element of Q×Σ∗×Γ∗ composed by a the current state of the
PDA, the remaining string and the current stack.
The configuration (q2, s, γ2γ1) is a direct successor of the configuration (q1, xs, zγ1), written
(q1, xs, zγ1) (q2, s, γ2γ1) if (q2, γ2) ∈ ∆(q1, z, x). The successor relation is the transitive
closure of direct successor denoted ∗ .

Definition 15, Configuration

The intuition here is that when doing a transition from a state q1 to a state q2, the PDA consumes
a symbol x from the input and a symbol z from the stack and pushes back on the stack a sequence
of pushdown symbols γ2.

A string s of Σ∗ can be accepted by a PDA A = (Σ,Γ, Q,∆, I, Z, F ):

• s is accepted by final state (FS) if and only if there exists a path from configuration
(qI , s, zI) to (qF , ε, γ) where qI ∈ I, zI ∈ Z, qF ∈ F and γ is any stack;

• s is accepted by empty stack (ES) if and only if there exists a path from configuration
(qI , s, zI) to (q, ε, ε) where qI ∈ I and zI ∈ Z.

The language recognized by A in final state (resp. by empty state), denoted LFS(A) (resp.

Definition 16
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LES(A) ), is the set of its accepted strings by final state (resp. by empty stack).

For example, the following PDA recognizes the language {anbn | n > 0} both by final state and
empty stack.

({a, b}, {z,⊥}, {q0, q1, q2},
{(q0,⊥, a, q0, z⊥), (q0, z, a, q0, zz), (q0, z, b, q1, ε), (q1, z, b, q1, ε), (q1,⊥, ε, q2, ε)},
{q0}, {⊥}, {q2})

For example, aabb is recognized but not aab:
(q0, aabb,⊥) (q0, abb, z⊥) (q0, bb, zz⊥) (q1, b, z⊥) (q1, ε,⊥) (q2, ε, ε)
(q0, aab,⊥) (q0, ab, z⊥) (q0, b, zz⊥) (q1, ε, z⊥) 6

For any PDA A, there exists another PDA A′ such that LFS(A) = LES(A′) (resp. LES(A) =
LFS(A′)).

Theorem 11

See [4, section 6.2] for a proof.

The Type-2 class of languages generated by a context-free grammar is exactly the class of
languages recognized by a PDA by empty stack (resp. final state).

Theorem 12

See [4, section 6.3] for a proof.

A PDA A = (Σ,Γ, Q,∆, I, Z, F ) is deterministic (DPDA) iff:

1. |∆(q, z, x)| ≤ 1 for any q ∈ Q, z ∈ Γ and x ∈ (Σ ∪ {ε}),

2. if ∆(q, z, ε) 6= ∅ then ∆(q, z, a) = ∅ for all a of Σ.

A language is deterministic iff it is recognized by a DPDA by final state. Their set is denoted
D.

Definition 17, Deterministic pushdown automaton

A Type-3 language is deterministic: Type-3 ( D.

Theorem 13

A deterministic language has an unambiguous CFG: D ( U.

Theorem 14

See [4, section 6.4] for a proof of these two theorems.
The language {anbn | n > 0} ∪ {anb2n | n > 0} is in U \ D. It cannot be deterministic because we
need to read at least as b as we have read a before deciding wether the b should be read by pairs.
This requires an unbounded capacity not possible with DPDA. The language is unambiguous
because the grammar S → aTb, T → aTb, T → ε, S → aUbb, U → aUbb, U → ε is not ambiguous.
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5 Term algebra

A term algebra is defined as an algebraic structure over a signature. A signature (Σ, ar) is a
set Σ equipped with a (complete) function ar from Σ to N. The elements c of Σ are called the
constructors of the language and ar(c) is called the arity of c. A constructor of arity 0 is called a
constant.
In the rest of the document, we use a vector notation #—x to represent x1, ..., xn. The length n of
the vector should be clear from the context.

A term algebra TΣ over a signature (Σ, ar) is the smallest part of Σ∗ such that:

1. {c ∈ Σ | ar(c) = 0} ⊂ TΣ

2. c ∈ Σ ∧ ar(c) = n ≥ 1 ∧ # —

M ∈ T nΣ ⇒ c( # —

M) ∈ TΣ

The element of a term algebra are called terms.

Definition 18, Term algebra

Notice that TΣ is a language over Σ. Notice also that there is no constraint on the size of Σ.
For example, Σ = N ∪ {+, ∗}, ar(+) = ar(∗) = 2 and n ∈ N ⇒ ar(n) = 0 then TΣ defines a
simple expression language over integers. Its concretes syntax would probably requires the symbols
{0, 1, 2, ..., 9, +, *, (, )}.
Terms are trees where each constructor is a node and each of its direct sub-terms is a child.

∗

+

+

2 1

13

5778

Let P be a property on terms such that:

1. P is true for all constants,

2. for each constructor c of Σ with ar(c) = n, supposing P is true for terms M1, . . . ,Mn

we can prove that P is true for c(M1, . . . ,Mn).

Then P is true for all elements of TΣ.

Theorem 15, Structural induction

Proof. Let E be the set of terms where P is true. By hypothesis, E contains the constants and
contains c(M1, . . . ,Mn) whenever it containsM1, . . . ,Mn. By definition, TΣ is the smallest of such
sets meaning that TΣ ⊂ E and P is true for all TΣ.
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This theorem gives a direct method of proof qualified as proof by (structural9) induction10: prove
the property on constants (sometimes called the base cases) and then prove each constructor
preserves it (sometimes called the inductive steps). For example, it is easy to prove by induction
the following property.

If Σ1 ⊂ Σ2 then TΣ1 ⊂ TΣ2 .

Theorem 16

Proof. base: any constant of Σ1 is in Σ2 ; induction step: for {M1, . . . ,Mn} ⊂ TΣ1 , let’s suppose
{M1, . . . ,Mn} ⊂ TΣ2 , then by definition of TΣ1 , c(M1, . . . ,Mn) ∈ TΣ1 and by definition of TΣ2 ,
c(M1, . . . ,Mn) ∈ TΣ2 for all c of Σ1 (they are also constructors of Σ2).

It gives also a direct method of definition. To define a function on TΣ, define it on constants and
how it behave on constructors. For example, we can define the size of a term by:{

|c| = 0 if ar(c) = 0
|c(M1, ...,Mar(c))| = 1 + max i∈J1..ar(c)K|Mi| if ar(c) ≥ 1

It is often necessary to give names to part of terms. We have already done it on several occasions,
e.g. when talking about the “term” c(M1, ...,Mn). Formally, this requires to extends the set of
symbols to include names. Suppose we have a signature (Σ, ar) and countable set of names N
such that Σ ∩ N . We define terms with names over (Σ,N , ar) to be the elements of TΣ∪N with
ar(x) = 0 for all x ∈ N . The elements of TΣ∪N that does not contain names are ground terms (or
closed terms), their set is exactly TΣ. In the tree view, names are leafs as constants. For example:

∗

+

2 ×

x y

x

It is possible to define by induction the set of names N of a term with names:
1. N(c) = ∅ for c ∈ Σ and ar(c) = 0,

2. N(x) = ∅ for x in N ,

3. N(c(M1, ...,Mar(c))) = ⋃
i∈J1..ar(c)KN(Mi) when c ∈ Σ and ar(c) ≥ 1.

It is possible to replace some names of a term by other terms using substitutions.

A substitution is a function from N to TΣ∪N which is the identity function except for a finite
subset of N called its domain. A substitution whose domain is { #—x} is denoted [

#                  —

x 7→σ(x)]. A
substitution σ operates on TΣ∪N by:

1. σx = σ(x), for x in N ,

2. σc = c, for c ∈ Σ and ar(c) = 0,

Definition 19, Substitution

9There exists several form of induction but in our course, we will only cover structural induction hence we will
only use the term induction.

10Induction is akin to usual mathematical induction on N (called recurrence in french).
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3. σc(M1, ...,Mn) = c(σM1, ..., σMn), for c ∈ Σ and ar(c) ≥ 1,

A substitution operate on a term by replacing all occurences of each of the substitution variables
in the term. For example, using a tree view:

 x 7→
+

8 x


×

+

2 ×

x y

x
=

×

+

2 ×

+

8 x

y

+

8 x

Remark. As illustrated in the previous example, as the substitution image may contain a name
of its domain, the term may still contains the substituted names (x in the example).

Names are used in two ways: as metavariables or as variables. In the former case, the aim is to
speak of a set of terms whereas in the latter, it is to speak of a yet unknown term. The set of
names is then the union ofM, the set of metavariables, and X , the set of variables.
When names are metavariables, they are generally written capitalized. The term algebra TΣ∪M∪X
defines the language of metaterms whereas terms are elements of TΣ∪X . For example, if c is a
constructor of Σ of arity 2 and M1 and M2 are metavariables (elements ofM) then c(M1,M2) is a
metaterm. A metaterm containing at least one metavariable (it is an element from TΣ∪M∪X \TΣ∪X )
is used to describe a set of terms i.e. a subset of TΣ∪X . If NM denote the function giving the set
of metavariable of a metaterm and T is a metaterm such that NM(T) 6= ∅, we define:

JTK = {x ∈ TΣ∪X | NM(T)={ # —

M} ∧ (∃ #—x ∈T nΣ∪X ∧ x = [ #           —

M 7→x]T)}

This set is said to be the meaning11 of the metaterm. In general, the brackets (J·K) are omitted and
one must understand when reading a metaterm T that we are talking of the set JT K. Therefore,
the precise set of metavariable is often left implicit. For example, by abuse of notation we say:

c(M1,M2) = {x ∈ TΣ∪X | ∃{x1, x2} ⊂ TΣ∪X ∧ x = c(x1, x2)}

The set of terms with variables (TΣ∪X ) is denoted TΣ[X ]. The variables are denoted using low-
ercase. Such a term represent a still unknown term. The term will be obtained by applying a
substitution. Mathematically, such a term T containing n variables is a function from TΣ[X ]n to
TΣ[X ].
To define scopes of variables such that, for example, x in M does not clash with "another" x
in a larger term (e.g. M + x), we define binders12. A binder b of arity n binds the n variables
x1, ..., xn within the term M when applied by b(x1, ..., xn).M . The arity of a binder is at least 1.
In programming languages, examples of binders are the variable declaration instruction (e.g. int
v;) with the scope going until the current bloc terminates or the definition of a function (e.g.
int f(int i, float f) {...}) that binds several variables and whose scope is the body of the
function.

11It is a semantics in the denotational sense defined later hence the use of the double brackets notation.
12there are other ways of introducing binding, see for example [3]
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Let X be a countable set of variables, Σ be the union of C the set of constructors and B the
set of binders. A term algebra with binders TΣ[X ] is the smallest part of (Σ∪X )∗ such that:

1. X ⊂ TΣ[X ]

2. {c ∈ Σ | ar(c) = 0} ⊂ TΣ[X ]

3. c ∈ C ∧ ar(c) = n ≥ 1 ∧ # —

M ∈ TΣ[X ]n ⇒ c( # —

M) ∈ TΣ[X ]

4. b ∈ B ∧ ar(b) = n ∧ #—x ∈ X n ∧M ∈ TΣ[X ]⇒ b( #—x ).M ∈ TΣ[X ]

Definition 20, Term algebra with binders

In such a language, a term may contain two kind of variables: bound variables or free variables.
A bound variable is a variable in the scope of a binder binding it. A free variable is a variable not
in the scope of a binder binding it. The set of free variables is defined by induction as follows:

FV(x) = {x} if x ∈ X
FV(c) = ∅ if c ∈ {c ∈ Σ | ar(c) = 0}
FV(c( # —

M)) = ⋃
i∈J1..nK FV(Mi) if c ∈ {c ∈ C | ar(c) = n ≥ 1}

FV(b( #—x ).M) = FV(M) \ { #—x} if b ∈ {b ∈ B | ar(b) = n}

In a term, a bound name has no importance, it’s only a link to its binder13. This is formalized
by defining an equivalence relation ≡α on terms saying that two terms are equivalent if they only
differ through bound names.

x ≡α T if T =x ∧x ∈ X
c ≡α T if T =c ∧c ∈ {c ∈ Σ | ar(c) = 0}
c( # —

M) ≡α T if T =c( #—

N) ∧ ∀i,Mi ≡α Ni ∧c ∈ {c ∈ C | ar(c) = n ≥ 1}
b( #—x ).M ≡α T if T =b( #—y ).N ∧ [ #        —x 7→y]M ≡α N ∧b ∈ {b ∈ B | ar(b) = n}

Then, we work on the corresponding quotient TΣ[X ]/ ≡α14. It is not done in this course to simplify
the presentation. But we sometimes refer to α-renaming to change some bound variables (using
the notation =α).
Substitution definition must be must extended accordingly by:

4. σb( #—x ).M = b( #—x ).σ| #—xM , for b ∈ B, ar(b) = n, #—x ∈ X n, σ| #—x (y) = y if y ∈ { #—x} and
σ| #—x (y) = σy otherwise

Notice that the substitution does not affect the variables bound by a binder. A substitution can
add new bound variables, a phenomenon called capture. This happens when a variable x appears
in the substitution result and is applied in the scope of a binder binding x. For example, if b is a
binder of arity 1 and c is a constructor of arity 2:

[y 7→ x]c(y, b(x).y) = c([y 7→ x]y, [y 7→ x]b(x).y) = c(x, b(x).[y 7→ x]y) = c(x, b(x).x)

Even if they are both created by the same substitution, the second occurrence of x is very different
from the first as it is bound whereas the first is free. In general, we try to avoid capture by renaming
the variable bound in the term before the substitution.

[y 7→ x]c(y, b(x).y) = c([y 7→ x]y, [y 7→ x]b(x).y) =α c(x, [y 7→ x][x 7→ z]b(x).y)
= c(x, [y 7→ x]b(z).y) = c(x, b(z).x)

13There exists notations without names, see for example [2].
14It is the set of equivalent classes of the equivalence relation.
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6 Syntax

Often, we distinguish between the concrete syntax and the abstract syntax of a language. The
concrete syntax describes precisely the strings of the language in terms of symbols (the subset of
the free monoid) whereas an abstract syntax describes abstractly the possible constructs on the
form of an term algebra (see below). The concrete syntax describes how to write a string of the
language while the abstract syntax describes the essence of this string. For example, the C string
“if (a) then { 1 } else { 0 }” can be represented by the abstract syntax “if(a, 1, 0)”.
Concrete syntax focuses on the interaction with the (human) user of the syntax whereas abstract
is aimed at the computational treatments.

6.1 Concrete syntax

For complex languages, such usual programming languages, the syntax is separated in two levels.
In a first level, we have raw symbols that form tokens (sometimes called syntactic units). And in
a second level, these tokens are combined to form statements. For example, the first level would
use the alphabet {a, b, ..., z} whereas the second could be {if, then, else}.
Furthermore, the first level is often built as a collection of languages. For example, we could
build a simple expression language Lexp as the union of Lint = {x ∈ {0, 1, 2, ..., 9}∗ | |x| ≥ 1},
Lfixed = {x.y | x ∈ Lint ∧ y ∈ Lint}, Lop = {+, -, *, /} and Lpar = {(, )}.
More formally, the scanner is a small generalization of a FA called a transducer. A transducer is a
FA with an output alphabet and where transitions can also produce an output values. The input
alphabet will generally be composed of characters and the output alphabet will be composed of
tokens.
The concrete syntax focusses on interaction with the (human) user. As such it must be readable
and efficient for its user. It must define precisely how to understand ambiguous strings. For
example, the string 1+2*5 can be understood as (1+2) *5 or 1+ (2*5).
Consult http://www.infoq.com/presentations/Language-Design.
[TODO: Transducer, better link with FA]

6.2 Abstract syntax

The abstract syntax must define the essential content of a string. It is mainly used to understand
and manipulate a string.
[TODO: link with term algebra]

7 Giving meanings to syntactic objects

There is mainly three ways of defining the semantics of a term:

1. axiomatic semantics: some logical assertions express properties of terms. Such a semantics is
defined by systems of equations describing the effect of each syntactic construction to logical
assertions. The most well-known is Hoare triple15 where {Pre}T{Post} expresses that if

15Consult http://en.wikipedia.org/wiki/Hoare_logic.
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Pre is true before the execution of T and T terminates then Post is true after its execution.
This kind of semantics gives a macroscopic vision of the meaning (generally partial) and is
mainly used to study properties like consistency, completeness, compositionality, ...

2. denotational semantics16: each term is mapped to an object of a known (mathematical)
space (e.g. sets, universal algebra, domain, category, ...). The semantics is given by a
projection called an interpretation and denoted J.K or I(.). This gives an abstract vision of
the meaning, we do not really know of the computation happens, we only have an image of it.
It is mainly used to study meta-theory such as the equivalence of terms, fixed-point theory,
... A denotational semantics is not easy to construct as it generally requires compositionality
(the meaning of a term is the composition of the meaning of its subterms).

3. operational semantics17: how computation behaves (the sequence of states). Often it is
defined by computation rules (transition system) where each term either reduces to another
(smaller) term or is a value. There exists two kinds of operational semantics: small-step
or big-step. In the former every step of computation is described whereas the latter specify
directly the result for each term. Both gives a microscopic vision of the meaning useful to
study termination, non-determinism, cost of computation...

http://en.wikipedia.org/wiki/Semantics_(computer_science)

8 Transition systems

A transition systema is a pair (S,→) of a set S (of states) and a binary relation → of S
(→ ⊂S × S).
A pair (p, q) of → is noted infix p→ q and we speak of a transition from state p to state q.

aAlso known as reduction system.

Definition 21, Transition systems

In this course, states will be terms.
A transition system is a directed graph where vertices are the states and arcs are defined by the
transition relation. If we add initial and final states, we fall back on automaton when the set of
state and of transition are finite. Therefore, a transition system is deterministic iff for all state s
there exists at most one state s′ such that s→ s′.
A term T is irreducible or normal, if there exists no term it can reduce to (T 6→). If a term T
reduces to another term T ′ which is normal, T ′ is called a normal form of T . A term is normalizable
(resp. strongly normalizable) if it has at least one normal form (resp. it has only finite reduction
sequences). A term may have no normal form (it has only infinite reductions). A term may have
both normal forms and infinite reductions (it is normalizable but not strongly normalizable).
A reduction sequence (or trace) is a sequence of terms T1, ..., Tn such that T1 → T2, ..., Tn−1 → Tn.
It is sometimes denoted T1 →n Tn when we do not care about the intermediary terms. The
reflexive and transitive closure, denoted→∗ is the smallest relation including→ being reflexive and
transitive. It contains all the reduction sequences.

16Consult http://en.wikipedia.org/wiki/Denotational_semantics.
17Consult http://en.wikipedia.org/wiki/Operational_semantics.
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T

T1 T2

T ′

Figure 4: Confluence

A transition system is strongly normalizing if all its reduction sequences are finite. It is weakly
normalizing if all terms have a normal form.

Definition 22, Strongly / weakly normalizing

Notice that strongly normalizing implies weakly normalizing.
A transition system is confluent in T iff when T →∗ T1 and T →∗ T2, there exists a T ′ such that
T1 →∗ T ′ and T2 →∗ T ′. It is confluent if it is confluent on each term. This is often represented
by the schema in figure 4. Notice that confluence implies uniqueness of normal forms. Confluent
reductions are interesting because whatever the path of reduction you chose you will end up with
the same result.

9 Inference rule and proof

A judgment is a logical assertion.

Definition 23, Judgement

For example, Term → OtherTerm is a (reduction) judgement.

An inference rule is a collection of n+1 judgments J1, ..., , Jn and J such that J1∧ ...∧Jn ⇒ J .
The left hand judgements J1, ..., , Jn are called the premises whereas the right hand J is called
the conclusion. An inference rule with no premise is called an axiom. An inference rule is
written:

J1 · · · Jn

J

Definition 24, Inference rule

Consult http://en.wikipedia.org/wiki/Inference_rule.

A derivation (or proof) is a tree of inference rules where the leaves are axioms.

Definition 25, Proof

For example:

J1 J2
· · ·

J3
· · ·

J4

J5

J6
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Such a tree can be built from axioms to conclusion following a method called forward chaining. In
this case, we are doing a blind search in the judgment space as we do not know how to proceed
to the conclusion. Another method proceed from conclusion to axioms and is called backward
chaining. This time the search is guided at each step by the form of the current conclusion.

Glossary
A

Abstract syntax 19, 22

Accepted 5, 13, 22

Accepting 5, 22

Accessible 5, 22

Alphabet A set whose elements (the symbols) are used to build strings. It provides the building
blocks to define formal languages. 2–4, 9, 13, 19, 22, 25

Ambiguous 11, 22

Arity 15, 22

Axiom 10, 21, 22

Axiomatic semantics 19, 22

B
Backward chaining 22

Binder 17, 22

C
Capture 18, 22

Chomsky hierarchy 10, 22

Closed term 16, 22

Complete 6, 22

Conclusion 21, 22

Concrete syntax 19, 22

Configuration 13, 22

Confluent 21, 22

Constant 15, 22
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Constructor 15, 22

D
Denotational semantics 20, 22

Derivation 21, 22

Derivation tree 11, 22

Deterministic 7, 14, 20, 22

F
Finite automaton (FA) A finite automaton is an abstraction modeling stateful objects and their

reaction to actions. It is composed of states and transition between these states on labels.
In this course, the labels are symbols of an alphabet and FA are used to recognize if a string
belong to a language (when it is accepted by the corresponding FA). 4–9, 22, 24

Formal language A formal language is any set of strings over an alphabet. See definition 1. 2,
22

Forward chaining 22

Free monoid The set of possible strings over an alphabet. If the alphabet is A the free monoid is
denoted A∗. It is called monoid because its concatenation operation is associative and the
empty string is a neutral element for the concatenation. 2, 19, 22

G
Grammar 9, 22

Ground term 16, 22

I
Inference rule 21, 22

Infix An infix operator is an operator appearing between its operands. The usual binary opera-
tors are infix. 3, 22

Irreducible 20, 22

J
Judgment 21, 22

L
Language generated 10, 22

Language recognized 5, 13, 22

M
Metaterm 17, 22

IMT Atlantique 23 1st semester 2019



Langages et logique – ELU 610 Lecture notes – Formal languages

Metavariable 17, 22

N
Non-terminals 9, 22

Normal 20, 22

Normal form 20, 22

Normalizable 20, 22

O
Occurence 17, 22

Operational semantics 20, 22

P
Path 5, 22

Postfix A postfix operator is an operator appearing after its operands. 3, 22

Premise 21, 22

Productions 10, 22

Proof 21, 22

Pushdown automaton 13, 14, 22

R
Recognizable 6, 22

Reduction sequence 20, 22

Reduction system 20, 22

Reflexive and transitive closure 20, 22

Regular A language is regular if it can be defined by a regular expression or by a finite automaton.
See definition 3 and theorem 4. 4, 8, 9, 12, 22

Regular expression (RE) A regular expression over an alphabet is a string formed from the sym-
bols of the alphabet, a symbol for nothing, a symbol for empty, concatenation, choice and
(Kleene) star. It may also contain parenthesis. Such a string is used to define an associated
language. See definition 2. 3, 4, 8, 9, 22, 24

Rejected 5, 22

S
Scope 17, 22
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Signature 15, 22

Sink 5, 22

State 20, 22

String (also word) A string over an alphabet is a finite ordered sequence of symbols from this
alphabet. The empty string is the string containing no symbol. 2–5, 8, 14, 19, 22, 25

Strongly normalizable 20, 22

Strongly normalizing 21, 22

Stuck 5, 22

Substitution 16, 22

Symbol An element of an alphabet. 2–5, 15, 16, 19, 22, 25

T
Term 15, 22

Term algebra 19, 22

Terminals 9, 22

Trace 20, 22

Transition diagram 4, 5, 22

Transition system 20, 22

Transition table 5, 22

V
Variable 17, 22

W
Weakly normalizing 21, 22

Well-formed An object is well-formed if it conforms to a set of rules that constrain its form.
Well-formedness rules are used when defining the precise syntax is difficult. It proceed in
two steps, first we define a (loosy) syntax that define a language too large and then we define
rules to eliminate the elements of this language we do not want. 3, 22

Word See string. 2, 22
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