

PC1 – Let's practice rewriting Langages et logique – ELU 610

Objectives

At the end of the activity, you should be capable of:

- writing and understanding a λ -term;
- compute in the λ -calculus (apply substitutions and reductions).

1 Basic syntax of the λ -calculus

Exercise 1 (Parenthesis)

$\triangleright~$ Remove parenthesis as much as possible for the following $\lambda\text{-terms:}$

1.1 $((\lambda y.(\lambda x.((yz)x)))(\lambda x.x))$ **1.2** $(\lambda x.((\lambda y.((\lambda x.y)y))x))$ **1.3** $((\lambda y.((\lambda z.A)(yy)))(\lambda x.(xx)))$ **1.4** (((ab)(cd))((ef)(gh)))

it is a metaterm, $A \in \Lambda_{\mathcal{X}}$

Exercise 2 (Tree representation)

- $\triangleright~$ Give the tree representation of the following $\lambda\text{-terms:}$
 - **2.1** $\lambda x.(\lambda y.yy)zx$
 - **2.2** $(\lambda y.yyy)(\lambda x.xx)$

2.3 ux(yz)(λv.vy)
2.4 (λx.λy.λz.xz(yz))uvw
2.5 w(λx.λy.λz.xz(yz))uv

Exercise 3 (Free variables)

 $\,\triangleright\,$ Give the set of free variables of the terms 1.1 to 2.5.

Exercise 4 (Substitution)

▷ Apply the following substitutions

4.1 $[x \mapsto \lambda y.xy](\lambda y.x(\lambda x.x))$ 4.2 $[y \mapsto \lambda v.vv](\lambda y.x(\lambda x.x))$ 4.3 $[x \mapsto \lambda y.vy](y(\lambda v.xv))$

Exercise 5 (Reduction)

Gives all the possible sequences of reductions for the terms 1.1, 2.1, 2.4, then 2.2, 1.2 and 1.3.

2 Data types in the λ -calculus

Exercise 6 (Boolean)

Let **T** and **F** be two combinators defined by $\lambda x \cdot \lambda y \cdot x$ and $\lambda x \cdot \lambda y \cdot y$.

▷ Question 6.1: Show that the combinator $If - \lambda h \lambda x \lambda y h x$

Show that the combinator $If = \lambda b \cdot \lambda x \cdot \lambda y \cdot b x y$ can be the usual if operator.

 \triangleright Question 6.2:

Give the combinators Not, And and Or

Exercise 7 (Pairs)

Pairs are defined by two functions *fst* and *snd*. A pair stores two values, the first being retrieved by *fst* and the second by *snd*. Let's denote a pair containing v_1 and v_2 by (v_1, v_2) then:

$$\begin{cases} fst(v_1, v_2) = v_1\\ snd(v_1, v_2) = v_2 \end{cases}$$

 \triangleright Define *fst* and *snd* if we encode the pair (v_1, v_2) as $\lambda f \cdot f v_1 v_2$.