
29/09/2016

PC3, TP7-8 – Let’s practice compilation
Langages et logique – ELU 610

Objectives

At the end of the activity, you should be capable of:

• to define the syntax and implement the corresponding lexer and parser for a simple language,

• give the formal semantics of a simple language,

• implements a simple interpreter of it,

• implements a simple translation from one language to another one.

Part I

Context
1 The big picture

During our practice of compilation, we are going to write a compiler for a simple arithmetic
expression language. This simple language is named Expr and follow the exercise 6 directly from
the Discovering OCaml document.
To make it simpler for you, instead of generating X86 code to execute it on a standard machine,
we are going to use a virtual machine. Such a virtual machine is a program that takes a low-level
program and executes it. We talk about interpretation. For pedagogical reason, we stick to a
simple and minimal low-level language. This low-level language is called Pfx and is a so-called
stack language (this will become clear when we will define it).
To summarise, we are going to work on two components:

1

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

Expr
compiler

Pfx
virtual machine

A Pfx programA program
in Expr

input
output

These two components, the Expr compiler and the Pfx virtual machine follow a similar archi-
tecture: first they parse their input language to produce an internal data structure (the AST),
and then treat this AST. However, they differ in their treatment. The Expr compiler produces a
corresponding Pfx program while the Pfx virtual machine executes its input.

Expr compiler

Pfx virtual machine

A Pfx program (data structure)

A Pfx
program
(file)

A program
in Expr

input
output

lexer parser generator
token

control
AST

lexer parser
interpretortoken

control

AST

For pedagogical reason and testing purpose, the Pfx virtual machine is able to receive a (Pfx)
AST directly or to parse a file containing a Pfx program.

2 Work to be done

The overall objective is to produce a working Expr compiler and a working Pfx virtual machine.
The work will happen both at a mathematical (conceptual) level and at a programming level, the
first being the specification of the second. You will be required to answer three kinds of questions:

• expl: you are supposed to produce a textual explanation

• math: you are supposed to give a set of mathematical definition, often in the form of a set
of inference rules

• code: you are supposed to produce code; as usual, this code should be of quality (well
indented, commented, with a good choice of identifiers, tested, . . .)

The work is organised in a set of questions you are supposed to work on linearly. Moreover, at
every step, you will have both a working Expr compiler and a working Pfx virtual machine. All
along the subject, we enrich both the user language Expr and the low-level language Pfx.
During your work, you will need:

IMT Atlantique 2 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

• the document containing lecture notes about Compilation with OCaml (notes.pdf). To
succeed in writing your compiler, the reading of this document is necessary: it gives
hints related to the compilation process, to the tools you will use (ocamllex and menhir).
It also gives you the syntax and links to the official documentation.

• this document presenting the questions and the work to be done.

We also provide you an additional document to help you to remember the tools and commands:
cheatsheet.pdf.
If you are proficient in OCaml and in the compilation field, just read the current document (please
note that we also extend the language in order to handle simple functions and closures), then shut
up and hack!
Up to the exercise you reach, all questions have to be answered. Code-related ones are answered
by writing OCaml code and a quick note somewhere (comments within the code, quick summary
in another file such as the README, etc.). Other questions have to be answered in a separated
file, using an interoperable format (plain text or PDF for instance). It is obviously possible to
answer mathematical questions by learning and using LATEX, however this is not the point of this
course (and could be time-consuming. . .). An efficient way to answer such questions is to scan a
readable handwritten answer.

3 How and what to deliver?

To help you with your deliverable, we provide a project skeleton (project_skeleton.tar.gz)
which should be renamed, adapted and extended following your needs. Please also read the
README example.
We expect you to deliver a compressed archive (.tar.gz file1) containing:

• a Pfx virtual machine written in OCaml, using ocamllex and menhir, wrt the specifications
that are expressed throughout the questions,

• an Expr compiler written in OCaml, using ocamllex and menhir, wrt the specifications
that are expressed throughout the questions,

• a README (plain text file) explaining your work.

To be sure to be evaluated and to hope to obtain a strictly positive mark, you should also pay
close attention to the form of your deliverable:

• deliver only one compressed archive (tar.gz format) of your top level directory (meaning
that decompressing it should result in a single directory),

• please respect the following naming convention: NAME1-NAME2.tar.gz,

• file encoding: UTF-8 (especially if you write non-ASCII characters. . .),

• clean your directory: remove all useless files and files that can be generated (for example
the _build directory),

1tar.gz is not zip, rar, 7z, tar.xz, tar.bz2, etc. and should be built using the tar tool.

IMT Atlantique 3 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

• choose meaningful names (file names and contents) understandable by other people,

• comment your code,

• indent your code consistently,

• organise your files (use subdirectories if needed),

• join a README file and answers to the non-code-related questions.

Part II

Questions
4 A simple stack language

During our practice of compilation, we are going to use a stack language: Pfx. As expressed by
its name, it is a language in the tradition of Postscript2 and Forth3 relying on a stack to store
value instead of variables. In such a language, all operations act on the elements of the stack.

Exercise 1 (expl)

B What is a stack? What are the operations that you usually execute on a stack?

Pfx is inspired by the Postfix machine of the book "Design Concepts in Programming Languages"4.
It is intentionally kept simple. Whenever, you are not satisfied with it, feel free to extend and
modify it. . . But not during the lab sessions.

4.1 Informal description

A Pfx program begins with an integer specifying the number of arguments it will need to be run,
then it is composed of a sequence of basic instructions. Basic instructions are push, pop, swap (it
exchanges the first two elements of the stack) and the five arithmetic operations add, sub, mul,
div and rem. Only push takes an argument which is an integer. All the arithmetic operations
behave similarly: they use the first two elements of the stack as arguments, remove them and
push back the result. This first version only manipulates integers so all values are integers.
For example, the program 0 push 12 push 7 sub returns −5 while 0 push 12 push 7 swap sub
returns 5.
Program arguments are pushed onto the stack from last to first, before the execution of the
program commands.
Here follow two examples of a program execution in detail.

2https://en.wikipedia.org/wiki/PostScript
3https://en.wikipedia.org/wiki/Forth_(programming_language)
4https://mitpress.mit.edu/books/design-concepts-programming-languages

IMT Atlantique 4 1st semester 2019

https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://mitpress.mit.edu/books/design-concepts-programming-languages

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

Program: 3 add div
Parameters: 3 7 2

3

7

2

add div

state #0
initial

3

7

2

add div

computation
step #1

10

2

div

state #1

10

2

div

computation
step #2

5

state #2
final

⇒ result = 5

The first example is equivalent to the following one:

Program: 0 push 2 push 7 push 3 add div
Parameters: ∅

push 2 push 7 ...

state #0
initial

push 2 push 7 ...

computation
step #1

2

push 7 push 3 ...

state #1

2

push 7 push 3 ...

computation
step #2

7

2

push 3 add ...

state #2

7

2

push 3 add ...

computation
step #3

3

7

2

add div

state #3

... as first program ...

⇒ result = 5

Exercise 2 (expl)

B Detail in the same way the execution of 0 push 12 push 7 swap sub.

IMT Atlantique 5 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

4.2 Formal semantics

To formalise the semantics of Pfx, we will use the following notations:

• a program is a pair i, Q where i is the number of awaited arguments and Q the sequence of
instructions composing the program, the empty instruction sequence is written ∅,

• an instruction sequence is built by the constructor ’.’, the sequence composed of I then Q
is I.Q,

• a stack is built by the constructor ’::’, adding an element n to the stack S is n ::S, the empty
stack is also written ∅, the length of the stack S can be obtained by #S,

The semantics of Pfx uses two sets of rules, one for programs that specify the execution of the
complete program and one to describe each possible computational step on a current instruction
sequence and the current stack. The rules for programs use the rule for computational steps.

Exercise 3
For programs, we have the following semantics:

(1)
i 6= n

v1, ..., vn ` i, Q⇒ Err
(2)

Q, v1 :: ... :: vn :: ∅→∗ Err
v1, ..., vn ` n,Q⇒ Err

(3)
Q, v1 :: ... :: vn :: ∅→∗ ∅, v :: S

v1, ..., vn ` n,Q⇒ v

The reduction rule → specifies the small step semantics of instructions and →∗ its transitive
closure5. Q,S → Q′, S ′ means that in one step the execution of instruction sequence Q with stack
S leads to instruction sequence Q′ and stack S ′.

BQuestion 3.1 (expl):
Explain using plain words the semantics of programs.

BQuestion 3.2 (math):
A case is still missing, spot it out and give the corresponding rule.

BQuestion 3.3 (math):
Give the rules describing the small step semantics for instruction sequences. Beware
to cover all cases of runtime errors.

4.3 Implementation

Exercise 4
BQuestion 4.1 (code):
Propose the OCaml code for a type command describing the Pfx instructions. It should
be in the file pfxAst.ml.

5The rule is potentially applied several times in sequence. Mathematically, A →∗ B if and only if A = B or
there exists C such that A→ C and C →∗ B.

IMT Atlantique 6 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

BQuestion 4.2 (code):
Write an OCaml function step that implements the small step reduction you defined
above the Pfx instructions. It should be in the file pfxEval.ml.

B You should test your code by running some Pfx programs defined as OCaml values (not yet
parsed from files, this will be done later).

5 A simple arithmetic expression language

Following on the exercise 6 from the Discovering OCaml document, we will define a simple arith-
metic expression language, named Expr in order to compile it to Pfx.
This first version of Expr AST is implemented in file exprAst.ml as follows:
type expression =
| Const of int
| Var of string
| Binop of BinOp.t * expression * expression
| Uminus of expression

where the type BinOp.t is implemented in file binOp.ml as follows:
type t =
| Badd | Bsub | Bmul | Bdiv | Bmod

You can explore the code provided within the project skeleton.

Exercise 5
BQuestion 5.1 (math):
Propose a compilation schema of Expr in Pfx. Give its formal description. Notice
that with the current definition of Pfx, we cannot implement variables. We defer
their implementation to a later exercise.

BQuestion 5.2 (code):
Define a function generate implementing the semantics you defined in previous ques-
tion. It should be in the file exprToPfx.ml.

B At this point, you have a first working compiler of Expr and you should be able to execute
simple programs.

6 Parsing

Read the document containing the lecture notes entitled Compilation with OCaml (notes.pdf)
in order to understand ocamllex and its syntax. You can explore the code for the lexer and the
parser provided within the project skeleton.

IMT Atlantique 7 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

Exercise 6 (A first Pfx lexer)
BQuestion 6.1 (code):
Write a lexer for the Pfx stack machine language. Complete the provided pfxLexer.mll.
To test it without the parser, have a look at the file exprLexer_standalone.mll on Moo-
dle.

The following OCaml code6 provides a way to read the string to parse from a file. The name of
the file is given as an argument on the command line and is automatically passed to the function
compile:
(∗ Entry point of the program, should contain your main function: here it is
named parse_eval, it is the function provided after question 6.1 ∗)
(∗ The arguments, initially empty ∗)
let args = ref []
(∗ The main function ∗)
let parse_eval file =
print_string ("File "^file^" is being treated!\n");

BQuestion 6.2 (code):
Reuse this code to be able to parse a file containing a Pfx program and prints all the
tokens encountered in the process.

B You should test your lexer and use test files.

Exercise 7 (Locating errors, code)
Generally, a compiler should be able to return an error message containing the location of the
error to its user. OCaml module Lexing defines a type position for this purpose.
type position = {
pos_fname : string; (∗ name of the file ∗)
pos_lnum : int; (∗ number of the line ∗)
pos_bol : int; (∗ nb of chars between the beginning of the file and the one of current line ∗)
pos_cnum : int; (∗ nb of characters since the beginning of the file ∗)

}

By default, the generated lexer only updates the last element (pos_cnum). The actions must take
care of the others. The functions lexeme_start_p and lexeme_end_p of the module Lexing allows
one to get respectively the location of the beginning and the end of the current token. To help you,
we provide the module Location7 which defines helpful elements. For the moment, you should
only use:

• the exception Location.Error carrying both a message and the location of the error;

• the type Location.t of a location composed of a starting position and an ending position;

• the function Location.init setting the file name of the given buffer;
6Provided in the project skeleton, on Moodle.
7As always, available on Moodle.

IMT Atlantique 8 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

• the function Location.incr_line increasing a line in the given buffer;

• the function Location.curr return the current position of the given buffer;

• the function Location.print printing the given location.

B Modify your code from the previous exercise to be able to return the location of
errors.
B Now and for the rest of the UV, you should use ocamlbuild to compile and directly produce
an executable file. You need to add the following line to bind the defined main function (here
compile)8.
let _ = Arg.parse [] compile ""

Exercise 8 (A first Pfx parser)
BQuestion 8.1 (code):
Write a parser for the Pfx stack machine language.

BQuestion 8.2 (code):
Test it in combination with your Lexer. To do it, you will have to write a function
that prints the AST of Pfx. You should now use the provided file pfxVM.ml as the
main file for the Pfx virtual machine. It is the file that should be given to ocamlbuild
as a target.
Notice that it requires that you modify slightly your lexer to remove the main func-
tions and replace the token type definition by an open of the parser module.

B You should test with more than one test your Pfx parser!

7 Simple functions

Let’s suppose we would like to add notions of function and application to Expr. One way of doing
it is to add a definition of function expression and an application expression. As in the λ-calculus,
we limit ourselves to function with a unique argument. This leads to the following AST.
type expression =
| Const of int
| Var of string
| Binop of BinOp.t * expression * expression
| Uminus of expression
(∗ For function support ∗)
| App of expression * expression
| Fun of string * expression

8For more details, do not hesitate to consult the manual section on the module Arg.

IMT Atlantique 9 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

B You can find the new AST and the modified lexer and parser in the directory expr_fun of the
skeleton. You can replace the corresponding files in expr by their new version from expr_fun.
Currently, Pfx cannot be used to generate code including functions. We first have to modify the
language Pfx. Three new instructions must be added:

• executable sequence (Q), where Q is an usual instruction sequence, when it is encountered
the executable sequence is pushed on the top of the stack;

• exec which is an instruction that pops the top of the stack and executes it by appending it
in front of the executing sequence, notice that the top of the stack must be an executable
sequence;

• get pops the integer i on top of the stack, and copies on top of the stack the i-th element
of the stack, it raises an error if there is not enough element on the stack.

Notice that these new constructions impose that the stack now contains two kinds of objects:
integer or executable sequence.
Be sure to understand that Pfx does not have functions, it only has executable sequence.

Exercise 9
BQuestion 9.1 (expl):
Do we need to change the rules for the already defined constructs?

BQuestion 9.2 (math):
Give the formal semantics of these new constructions.

BQuestion 9.3 (code):
If needed, extend the lexer and parser of Pfx to include these changes.

The translation of Expr to Pfx must be revised. The idea is that a λ-abstraction is translated
to an executable sequence and an application is translated to an exec plus some code to clean
up the stack. This executable sequence supposes that its parameter is on the top of the stack
when it starts to execute. In its body, whenever it wants to use its parameter it gets it from
where it is using an environment P associating a variable to its position in the stack (its depth).
Consequently, during the translation, we have to keep track of the depth at which each parameter
is. When application terminates, it pops out the parameter from the stack. This behaviour is
described in the figure 1:

(a) the stack is in some state

(b) a computation pushes the argument of the future call

(c) another computation pushes the function to call, it must be an executable sequence

(d) the call is made, probably using the stack and its argument

(e) the call ends and pushes its results on the stack

Beware that during step (d), the stack may grow and therefore each time something is pushed
onto the stack we need to update the position of the various reachable arguments.

IMT Atlantique 10 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

rest of
the stack

(a)
before

application

arg

rest of
the stack

(b)
arg has been
computed

arg

(...)

rest of
the stack

(c)
fun has been
computed

arg

used
during

fun. eval.

rest of
the stack

(d)
executes

application

result
rest of

the stack

(e)
after

application

Figure 1: Usage of the stack during application

Exercise 10
BQuestion 10.1 (expl):
Give the compiled version of the expression (λx.x + 1) 2. Then describe step by step
the evaluation of its Pfx translation.

BQuestion 10.2 (math):
Give the formal rule for transformation.

BQuestion 10.3 (code):
Provide a new version of generate.

BQuestion 10.4 (expl):
Give the compiled version of the expression ((λx.λy.(x− y)) 12) 8. Then describe step
by step the evaluation of its Pfx translation. What do you think of the result? What
is happening?

A straight forward extension of the syntax consists in adding a so-called syntactic sugar to support
let definition (as of OCaml).

Exercise 11 (Syntactic sugar)
BQuestion 11.1 (expl):
What is the translation in the syntax of Expr already defined of a new let x = e1 in e2?

BQuestion 11.2 (code):
What part of the code must be modified to get support for let?

8 Closure

To solve the problem illustrated in question 10.4, we need to change the function value. When
defining a function value, we need to capture and store all its free variables (the variables defined

IMT Atlantique 11 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

by its context). Indeed, the function may be executed in a different scope that the one where it
was defined, so it must be able to retrieve the values of variables of its definition location when
executed. This new kind of value is called a closure and it is a pair composed of an environment
(of the free variables of the function) and the function. So the closure of a function λx.e in the
context of an environment E is denoted {E , x, e}. Notice that the domain of E is limited to set
of free variables of λx.e. When this domain is empty, we fall down on the function value of the
previous section. This explains why and when it was working!
The formal semantics of Expr is presented in figure 2. The values may be integer from set I,
closures (set C = X → (I∪C)×X×Expr9) or error (value Err). All operations are extended to
produce an error whenever they are applied to an error (e.g. −Err = Err and Err + v = Err).

(Const) E ` v ⇒ v
(Var)

x ∈ dom(E)
E ` x⇒ E(x)

(VarErr)
x 6∈ dom(E)
E ` x⇒ Err

(Uminus)
E ` e⇒ v

E ` − e⇒ − v
(Binop)

op ∈ {+,−, ∗} E ` e1 ⇒ v1 E ` e2 ⇒ v2

E ` e1 op e2 ⇒ v1 op v2

(Div)
op ∈ {/,%} E ` e1 ⇒ v1 E ` e2 ⇒ v2 v2 6= 0

E ` e1 op e2 ⇒ v1 op v2

(DivErr)
op ∈ {/,%} E ` e2 ⇒ 0
E ` e1 op e2 ⇒ Err

(App)
E ` e1 ⇒ {Ec, x, e} E ` e2 ⇒ v2 Ec, x 7→ v2 ` e⇒ v

E ` e1 e2 ⇒ v

(AppErr1)
E ` e1 ⇒ v1 v1 6∈ C
E ` e1 e2 ⇒ v1 op v2

(AppErr2)
E ` e1 ⇒ {Ec, x, e} E ` e2 ⇒ Err

E ` e1 e2 ⇒ Err

(Fun)
dom(E ′) = dom(E) ∀x ∈ dom(E), E ′(x) = E(x)

E ` λx.e⇒ {E ′, x, e}

Figure 2: Big step operational semantics of Expr

Exercise 12 (math)

B Give the proof derivation computing the value of the term of question 10.4 (((λx.λy.(x−
y)) 12) 8).

9X is the set of variables and Expr the set of terms of Expr.

IMT Atlantique 12 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

Exercise 13
BQuestion 13.1 (expl):
Is it possible to translate Expr to Pfx? If yes, can you give the idea of the translation.
If no, what would be necessary to add to Pfx ?

The chosen implementation of closure we are going to explore is the following.
A closure is an executable sequence that begins with instructions pushing onto the stack the values
of the free variables. Notice that this part of the executable sequence must be added at runtime
(the only moment when the values are known).
To enable the modification of an executable sequence at runtime we add a new construct to Pfx:
append. This construct expects the stack to contain a value on the top and an executable sequence
below. It appends the command storing the "value" in the stack at the beginning of the executable
sequence. When the value is an integer, this command is a push of it. The command is the value
when it is an executable sequence. It also adds the operation to remove this value from the stack
when the function ends.

BQuestion 13.2 (math):
Give the formal semantics of append.

BQuestion 13.3 (code):
If needed, extends the lexer and parser of Pfx to include these changes.

BQuestion 13.4 (math):
Give the formal rules of translation from Expr to Pfx to support closure.

BQuestion 13.5 (code):
Provide a new version of generate.

BQuestion 13.6 (expl):
Give the compiled version of the expression ((λx.λy.(x− y)) 12) 8. Then describe step
by step the evaluation of its Pfx translation. Is it better?

9 Extensions

To explore compilation in more depth, complete the following extensions by giving the formal
version and then by implementing them. For each extension, a piece of information on the difficulty
is provided.

1. (regular) Extend the stack machine with a sel instruction that requires a stack of at least
three elements. Its result is the third element of the stack if the first is 0 and the second in
the other case. Use this extension to add booleans, boolean operators, comparison operators
and a condition operator e1?e2 : e3 similar to the one of Java. Notice that the game is to
try to add as little new instructions to Pfx as possible10.

10My solution just adds one.

IMT Atlantique 13 1st semester 2019

Langages et logique – ELU 610 PC3, TP7-8 – Let’s practice compilation

2. (medium) Extend Expr with a let rec construct enabling the definition of recursive func-
tions. Hint11. Propose a mechanism to compile it to Pfx. Hint12.

3. (challenging) Extend Pfx with mechanisms to manipulate the stack. In this extension, a
new value can be on the stack, a stack. Add the following constructs:

• pack pushes a stack value containing current stack content after clearing it;
• unpack pops the top of the stack which must be a stack value and replaces current

stack by this value;
• switch pops the top of the stack which must be a stack value, packs the rest of the

current stack, replaces current stack by the stack value and pushes rest stack value.

These constructs provide so-called continuations. Use them to add to Expr:

(a) an exception mechanism,
(b) basic threading

11Do not return before trying!

Definearecursivefunctionfbyµf.λv.eandarecursiveclosure{E,f,x,e}.Evaluatingsucharecursiveclosure
addittotheenvironmentunderthenamef.

12Do not return before trying!

Theeasiestimplementationistodefineanotionofrecursiveinstructionsequencethatiskeptonthestackwhen
executedandonlypoppedwhenterminating.

IMT Atlantique 14 1st semester 2019

	I Context
	The big picture
	Work to be done
	How and what to deliver?

	II Questions
	A simple stack language
	Informal description
	Formal semantics
	Implementation

	A simple arithmetic expression language
	Parsing
	Simple functions
	Closure
	Extensions

