
Documentation of the package pgfuml
May 4, 2009

Fabien Dagnat 1

This package contains various macros to make it possible to create pgf (texdoc pgf for a docu-
mentation of pgf) pictures representing UML diagrams.

1 Conventions on this documentation

All portions of code are presented with a light blue background. If the result of the code portion
is included, it has a light orange background.
Each macro and environment defined in this package is configurable by options. These options
adopt the now classic notation keyval. That is positioning macro option is done by providing
pairs of a key (the option’s name) and a value. Here are two example:
\commande[opt1,opt2=unevaleur]{...}

\begin{environnement}[opt1,opt2=unevaleur]
...

\end{environnement}

In this document, each option is presented with its name, its type, its default value and its
description. As latex is not a typed language, the type is only informative about the form of value
you can pass to the option. For boolean, the value is optional and if it is absent, it is considered
as being true.

2 Classes

A UML class is created by the macro \umlclass. This macro must be called in a tikzpicture
environment. This macro has two arguments: a list of options (optional) and a body. The list

1. fabien.dagnat@telecom-bretagne.eu

1

mailto:fabien.dagnat@telecom-bretagne.eu

Documentation of the package pgfuml

of options (described below) define properties of the class such as its name, stereotypes. . . The
body is the text corresponding to the content of the class (its attributes and methods).
When displayed, the class is separated in parts. There may be from one to four parts. The first
part contains the name of the class and its stereotypes, the second part consists in the attributes,
the third of the methods and the fourth is an extra part not commonly used in diagrams. They
are respectivelly named text, attribute, method and extra.
Here is a first example:

The name of the class

with attributes
a1
a2
tutu

\begin{tikzpicture}[font=\footnotesize]
\umlclass[name=The name of the class,label=label](0,0){

with attributes\\
a1\\
a2
\separator
tutu

}
\end{tikzpicture}

In the body of a class, the various parts must be separated by a macro \separator. This macro
has an optional parameter describing the part concerned. The default value of this parameter is
method. See figure 1 on page 4, for an example of a class containing several separators.
The following options are supported by the macro \umlclass:
– name (string, intial value: empty)
The name of the class.

– abstract (boolean, intial value: false)
A boolean indicating whether the class is abstract or not. When true, \itshape is added to
the font for the name part.

– interface (boolean, intial value: false)
A boolean indicating whether the class is an interface or not. When true, \itshape is added to
the font for the name part. Furthermore, an interface stereotype is added in front of the other
stereotypes.

– stereotype (text, intial value: empty)
The stereotype text for the class. It can support line break using the \tabularnewline com-
mand. A macro \stereotype is provided to add the « guillemets ». It is used on anything:

«TUTU» \stereotype{TUTU}

– param (string, intial value: empty)
The name of the generic parameter.

– label (string, intial value: pgfuml@class)
The label used for the class. It is a usual tikz label and may be used to reference the class in
any command accepting such a label.

– parts (number (1-4), intial value: 1)
The number of displayed parts for the class. If the body is non empty and the parts is not
given, parts is automatically set to 3. For other values, the option is required. Figure 1 on
page 4 contains a code that shows how is displayed a class when one use the parts option.

– name font (macro, intial value: \ttfamily\bfseries)
The macro is used as a font specification for the name part of the class. By default, a typewriter
bold font is used to typeset the name part of the class. Beware, that some font does not support
bold typewriter face and use only typewriter face.

Télécom Bretagne 2 May 4, 2009

Documentation of the package pgfuml

– body font (macro, intial value: \ttfamily)
The macro is used as a font specification for the body part of the class. By default, a typewriter
font is used to typeset the body part of the class.

– fill (color, intial value: none)
If fill is not none and is a colour, this colour is used to fill the class.

– param fill (color, intial value: white)
If fill is not none and is a colour, this colour is used to fill the generic parameter.

– width (length, intial value: 2cm)
This length specifies the minimum width of the class. Beware that you must provide a length
(a number and a unit).

– name height (length, intial value: 1.5em)
This length specifies the minimum height of the name part of the class. Beware that you must
provide a length (a number and a unit).

A more complex example can be proposed to show the use of the various options:

An abstract class

attribute part
method part

« interface »
List

E
«A first »

«A second »
Yet another class

attribute part
method part

T

\begin{tikzpicture}[font=\footnotesize]
\umlclass[name=An abstract class,abstract,label=l,fill=green!30,name height=1cm](0,0){

attribute part
\separator
method part

}
\umlclass[name=List,interface,label=its label,param=E,param fill=graphicbackground](6,0){}
\draw[very thick,<->] (l) -- (its label);
\umlclass[name=Yet another class,param=T,width=5cm,

stereotype={\stereotype{A first} \tabularnewline \stereotype{A second}},
body font=\rm\large,name font=\sf\tiny](12,0){

attribute part
\separator
method part

}
\end{tikzpicture}

3 Relations

The second basic macro for UML class diagram is the notion of relation. It specifies a relation
between two classes that is represented by a line. In UML, several relations may be used. In the
pgfuml package, a common macro is used to typeset all relations but this macro is not aimed to be
used directly. The user is invited to use the more specific relations that are defined: associations,
inheritance, . . .
The first subsection introduces the relation macro and its options and then all specific relations
are presented each in its subsection.

Télécom Bretagne 3 May 4, 2009

Documentation of the package pgfuml

Its name
Its name

attribute part

Its name

attribute part
method part

Its name

attribute part
method part
extra part

\begin{tikzpicture}[font=\footnotesize]
\newcommand{\myclass}[2]{ \umlclass[name=Its name,label=its label,parts=#1](#2){

attribute part \separator method part \separator[extra] extra part }
}
\foreach \parts/\coord in {1/{0,0},2/{4,0},3/{8,0},4/{12,0}} { \myclass{\parts}{\coord} }

\end{tikzpicture}

Figure 1: Use of parts option

3.1 Relations

The macro \umlrelation takes an optional parameter describing options to use and two manda-
tory parameters that must be given between parenthesis. The two arguments may be any tikz
coordinate specification, but are aimed to be the labels of the classes to relate. The following
example demonstrates the basic use of the notion of relation:

N M

P
\begin{tikzpicture}[font=\footnotesize]

\umlclass[name=N,label=n](0,0){}
\umlclass[name=M,label=m](3.5,0){}
\umlclass[name=P,label=p](3.5,2){}
\umlrelation(m)(n)
\umlrelation(m)(p)

\end{tikzpicture}

Relations can be of the 8 following kinds (see figure 2 on the following page), the 3 firsts are
determined automatically while the 5 lasts need an option specification (see below):

1. vertical, if the two linked classes have less than 1mm of difference between their x coordinate
(P and M in the previous example).

2. horizontal, if the two linked classes have less than 1mm of difference between their y
coordinate (N and M in the previous example).

3. L, in other cases classes are linked by an L.
4. O, is a relation between a class and itself. It may appear on any of the four corners of the

class.
5. D, also known as direct relations corresponds to a direct line whatever the coordinates of its

extremities.
6. S, classes may also be linked by an S going through the middle of the segment joining

them.
7. C vertical, classes may be linked by a vertical C going through a point that is at distance

C sep (see C sep option explanation) of the middle of the segment joining them. Notice
that the classes need not to be aligned.

8. C horizontal, lastlty classes may be linked by an horizontal C going through a point that
is at distance C sep (see C sep option explanation) of the middle of the segment joining
them. Notice that the classes need not to be aligned.

Télécom Bretagne 4 May 4, 2009

Documentation of the package pgfuml

N

O

M

P

Q

R

horizontal

vertical

L

L inv route

CV

CV inv route

CH

CH inv route

S

S inv route

D

O

\pgfkeys{/tikz/point/.style={fill=red,circle,inner sep=0pt,minimum size=2pt}}
\newcommand{\drawPoints}[2]{\draw (start) node[point] {}; \draw (middle) node[#1] {#2};

\draw (middle) node[point] {};\draw (end) node[point] {};}
\begin{tikzpicture}[font=\footnotesize]

\umlclass[name=N,label=n](0,0){} \umlclass[name=O,label=o](0,4){}
\umlclass[name=M,label=m](5,0){} \umlclass[name=P,label=p](5,2){}
\umlclass[name=Q,label=q](10,3){} \umlclass[name=R,label=r](10,-1){}
\umlrelation(m)(n) \drawPoints{above}{horizontal}
\umlrelation(m)(p) \drawPoints{right}{vertical}
\umlrelation(n)(p) \drawPoints{above right}{L}
\umlrelation[inv route](m)(q) \drawPoints{above left}{L inv route}
\umlrelation[CV](n)(o) \drawPoints{right}{CV}
\umlrelation[CV,inv route](r)(q) \drawPoints{right}{CV inv route}
\umlrelation[CH,C sep=1.5cm,start shift=2mm](p)(q) \drawPoints{above}{CH}
\umlrelation[CH,C sep=1cm,inv route](n)(m) \drawPoints{above}{CH inv route}
\umlrelation[S](p)(r) \drawPoints{right}{S}
\umlrelation[S,inv route,start shift=-2mm](p)(o) \drawPoints{above}{S inv route}
\umlrelation[D](p)(q) \drawPoints{}{D}
\umlrelation[O](o)(o) \drawPoints{right}{O}

\end{tikzpicture}

Figure 2: The various kind of relations

Télécom Bretagne 5 May 4, 2009

Documentation of the package pgfuml

O relation and shifting options require that the corresponding parameter reference points must
correspond to a rectangular shape 2. If you do not use shift or O option, you can use any tikz
coordinate as parameters to the \umlrelation macro.
The following options are supported by the \umlrelation macro:
– D (boolean, intial value: false)
A boolean indicating whether the relation is a direct line whatever the coordinates of its ex-
tremities.

– O (boolean, intial value: false)
A boolean indicating whether the relation is a self relation. Beware that, this kind of relation
is build to be used between a class and itself, this means that both reference points must be
equal and be a class label. In other cases, the result is unspecified.

– O anchor (tikz position, intial value: north east)
A tikz position indicating the point used to determine the cycle relation position. Beware, that
the option is meant to be used with the four corners (north east, north west, south east and
south west). In other cases, the result is unspecified.

– O sep (length, intial value: 1cm)
The distance the point determining the cycle relation is from its anchor. In fact, this point will
have the coordinate anchor + (O sep,O sep).

– S (boolean, intial value: false)
A boolean indicating whether the relation has an S form ().

– CV (boolean, intial value: false)
A boolean indicating whether the relation has an C vertical form ().

– CH (boolean, intial value: false)
A boolean indicating whether the relation has an C horizontal form ().

– C sep (length, intial value: 2cm)
For C relation, the distance between the middle of the two classes and the middle of the relation
(see figure 3 on the next page).

– inv route (boolean, intial value: false)
This boolean controls the path of the relation in case of an L (instead of), a S (instead
of) or a C (and instead of and) kind of relation.

– start shift (length, intial value: 0mm)
– end shift (length, intial value: 0mm)
– shift (length, intial value: 0mm)
Extremities shifting specifications respectively for the start, the end and both sides. When used
the relation start or end point is shifted by the given value staying on the shape border. This
means that on west and east side, the shift is a y shift and on north and south border, it is a x
shift. The given length may be negative.

– arrow (tikz arrow, intial value: empty)
This option enable to set the arrow type of the relation. Any tikz arrow type specification may
be used and we refer the interested reader to the tikz documentation.

– dashed (boolean, intial value: false)
If true the relation is typeset dashed.

– name pos (number between 0 and 1, intial value: 0.5)
The position of the node named name along the segment from start to end of the relation. This
option is meant mainly to be used indirectly in associations and implementations.

2. In fact, they must have a north east and a south west anchor.

Télécom Bretagne 6 May 4, 2009

Documentation of the package pgfuml

N M

C sep

\pgfkeys{/tikz/point/.style={fill=red,circle,inner sep=0pt,minimum size=2pt}}
\begin{tikzpicture}

\begin{scope}[thick]
\umlclass[name=N,label=n](0,0){}
\umlclass[name=M,label=m](6,0){}
\umlrelation[CH](m)(n)

\end{scope}
\draw (start) node[point] {}; \draw (end) node[point] {};
\draw (middle) node[point] {};
\draw[dashed] (m) -- node[coordinate] (middlemn) {} (n);
\draw[<->] (middle) -- node[right] {\texttt{C sep}} (middlemn);

\end{tikzpicture}

Figure 3: A CH relation with C sep options explained

After the relation macro execution four temporary 3 points are defined: start, end, middle and
name. They correspond intuitively to the two extremities and the (logical) middle and are marked
by a red point in the figure 2 on page 5.

3.2 Associations

The first relation macro aimed to be used by user for UML class diagram is the notion of asso-
ciation. It specifies a relation between two classes that support to be annotated. The possible
annotations are a name and cardinality and naming of the two extremities. Furthermore, an
association may be directed (includes a navigation symbol), a composition or an aggregation.
The macro \umlasso has the same form of the relation macro as demonstrated by the following
example:

N M

P

as
ns

ae
ne

n1n2

\begin{tikzpicture}[font=\footnotesize]
\umlclass[name=N,label=n,width=1.5cm](0,0){}
\umlclass[name=M,label=m](4,0){}
\umlclass[name=P,label=p](4,2){}
\umlasso[arity start=as,arity end=ae,name start=ns,

name end=ne,nav start](m)(n)
\umlasso[name=n1,shift=2mm](m)(p)
\umlasso[name=n2,name anchor=left,shift=-2mm](m)(p)

\end{tikzpicture}

Associations are relations, in the sense that they will be represented as relations and therefore have
all the options of the relation macro (except for arrows that are specified using specific options).
And, in fact, one have the 7 kinds of associations.
Similarly, to shifting and O relation, extremity annotations placement is done automatically using
the received arguments as class labels. If no annotation, no shifting and no O is given one may

3. As every relation macro uses these points, you should save them if you need them. Saving the point p can be
done by putting a named coordinate node at its position: \draw (p) node[coordinate] (name) {}; for example.

Télécom Bretagne 7 May 4, 2009

Documentation of the package pgfuml

use any tikz coordinate as parameters to the \umlasso macro.
In the specific case of direct associations (option D), it is not possible to find easily good positioning
of the annotations. In this case, they are not typeset and this has to be done by hands. . .
The following options are supported by the \umlasso macro:
– name (string, intial value: empty)
The name of the association.

– name pos (number between 0 and 1, intial value: 0.5)
The position of the name along the segment from start to end of the association. Figure 4 on
the next page contains a description of some position for two S association and a C horizontal
association.

– name anchor (tikz position, intial value: depends on the association)
The position of the name of the association with respect to the middle (in the logical sense) of
the association. The package tries to find automatically a good position (above for "horizontal"
associations, right for vertical one and none for direct one). But if this placement does not
match your will, you can set it by hand. In figure 2 on page 5 the names are placed at the
position association macro would have placed them (it can serve as reference).

– arity start (string, intial value: empty)
– arity end (string, intial value: empty)
The cardinality of the extremities, either the start side or the end side. The package impose no
form on the cardinality specification. I advise to use \textasteriskcentered (∗) rather than
* when specifying cardinalities.

– name start (string, intial value: empty)
– name end (string, intial value: empty)
The name of the extremities, either the start side or the end side. The package impose no form
on the cardinality specification.

– sep (length, intial value: 0mm)
The length used to separate the extremities from their annotations (see figure 5 on page 10).

– D (boolean, intial value: false)
A boolean indicating whether the association is a direct line whatever the coordinates of its
extremities. Notice that in this case annotations are note displayed.

– O (boolean, intial value: false)
A boolean indicating whether the relation is a self relation. Beware that, this kind of relation
is build to be used between a class and itself, this means that both reference points must be
equal and be a class label. In other cases, the result is unspecified.

– O anchor (tikz position, intial value: north east)
A tikz position indicating the point used to determine the cycle relation position. Beware, that
the option is meant to be used with the four corners (north east, north west, south east and
south west). In other cases, the result is unspecified.

– O sep (length, intial value: 1cm)
The distance the point determining the cycle relation is from its anchor. In fact, this point will
have the coordinate anchor + (O sep,O sep).

– S (boolean, intial value: false)
A boolean indicating whether the association has an S form ().

– CV (boolean, intial value: false)
A boolean indicating whether the association has an C vertical form ().

– CH (boolean, intial value: false)
A boolean indicating whether the association has an C horizontal form ().

Télécom Bretagne 8 May 4, 2009

Documentation of the package pgfuml

N

P

0.5

0.25

0.75

0.125

0.875

0.50.25
0.750.125

0.875

N M

0.50.25 0.75

0.125 0.875

\pgfkeys{/tikz/point/.style={fill=red,circle,inner sep=0pt,minimum size=2pt}}
\begin{tikzpicture}[font=\footnotesize]

\umlclass[name=N,label=n](0,0){}
\umlclass[name=P,label=p](6,2){}
\umlasso[name=0.5,S](n)(p) \draw (start) node[point] {};
\draw (name) node[point] {}; \draw (end) node[point] {};
\umlasso[name=0.25,S,name pos=0.25](n)(p) \draw (name) node[point] {};
\umlasso[name=0.75,S,name anchor=left,name pos=0.75](n)(p) \draw (name) node[point] {};
\umlasso[name=0.125,S,name anchor=below,name pos=0.125](n)(p) \draw (name) node[point] {};
\umlasso[name=0.875,S,name anchor=above,name pos=0.875](n)(p) \draw (name) node[point] {};

\umlasso[name=0.5,S,inv route](n)(p) \draw (start) node[point] {};
\draw (name) node[point] {}; \draw (end) node[point] {};
\umlasso[name=0.25,S,inv route,name pos=0.25](n)(p) \draw (name) node[point] {};
\umlasso[name=0.75,S,inv route,name anchor=below,name pos=0.75](n)(p)
\draw (name) node[point] {};
\umlasso[name=0.125,S,inv route,name anchor=left,name pos=0.125](n)(p)
\draw (name) node[point] {};
\umlasso[name=0.875,S,inv route,name anchor=right,name pos=0.875](n)(p)
\draw (name) node[point] {};

\end{tikzpicture}
\begin{tikzpicture}[font=\footnotesize]

\umlclass[name=N,label=n](0,0){}
\umlclass[name=M,label=m](6,0){}
\umlasso[name=0.5,CH](n)(m) \draw (start) node[point] {};
\draw (name) node[point] {}; \draw (end) node[point] {};
\umlasso[name=0.25,CH,name pos=0.25](n)(m) \draw (name) node[point] {};
\umlasso[name=0.75,CH,name pos=0.75](n)(m) \draw (name) node[point] {};
\umlasso[name=0.125,CH,name anchor=left,name pos=0.125](n)(m) \draw (name) node[point] {};
\umlasso[name=0.875,CH,name anchor=right,name pos=0.875](n)(m) \draw (name) node[point] {};

\end{tikzpicture}

Figure 4: name pos option explained

Télécom Bretagne 9 May 4, 2009

Documentation of the package pgfuml

N M
A
B

sep

\pgfkeys{/tikz/point/.style={fill=red,circle,inner sep=0pt,minimum size=2pt}}
\begin{tikzpicture}

\begin{scope}[thick]
\umlclass[name=N,label=n](0,0){} \umlclass[name=M,label=m](8,0){}
\umlasso[sep=8mm,arity start=A,name start=B](m)(n)

\end{scope}
\draw (start) node[point] {}; \draw ([xshift=-8mm]start) node[point] {};
\draw ([xshift=-8mm]start) -- +(0,0.3);
\draw[<->] ([yshift=2mm,xshift=-8mm]start) -- ([yshift=2mm]start)

node[above,pos=0.5] {\texttt{sep}} ;
\end{tikzpicture}

Figure 5: An association with sep option explained

– C sep (length, intial value: 2cm)
For C association, the distance between the middle of the two classes and the middle of the
association (see figure 3 on page 7).

– inv route (boolean, intial value: false)
This boolean controls the path of the association in case of an L (instead of), a S (
instead of) or a C (and instead of and) kind of association.

– start shift (length, intial value: 0mm)
– end shift (length, intial value: 0mm)
– shift (length, intial value: 0mm)
Extremities shifting specifications respectively for the start, the end and both sides. When used
the association start or end point is shifted by the given value staying on the shape border.
This means that on west and east side, the shift is a y shift and on north and south border, it
is a x shift. The given length may be negative.

– dashed (boolean, intial value: false)
If true the relation is typeset dashed.

– compo (boolean, intial value: false)
– agre (boolean, intial value: false)
– nav start (boolean, intial value: false)
– nav end (boolean, intial value: false)
Booleans to specifies the arrow form of the relation. They respectively means composition
(), aggregation (), navigation at start () or navigation at end (). Composition and
aggregation "arrows" may only be put at the beginning extremities. Among the three beginning
arrows, aggregation wins on composition that wins on navigation.

3.3 Inheritance

The second form of relations is the inheritance relation. The macro \umlinherit has the now
usual form of the relation macro as demonstrated by the following example:

Télécom Bretagne 10 May 4, 2009

Documentation of the package pgfuml

N M

P \begin{tikzpicture}[font=\footnotesize]
\umlclass[name=N,label=n](0,0){}
\umlclass[name=M,label=m](4,0){}
\umlclass[name=P,label=p](4,2){}
\umlinherit(m)(n) \umlinherit(m)(p) \umlinherit(n)(p)

\end{tikzpicture}

Inheritance are relations, in the sense that they will be represented as relations and therefore have
all the options of the relation macro (except for arrow that is specified automatically). And, in
fact, one have the 7 kinds of inheritance.
The following options are supported by the \umlinherit macro:
– D (boolean, intial value: false)
A boolean indicating whether the inheritance is a direct line whatever the coordinates of its
extremities. Notice that in this case annotations are note displayed.

– S (boolean, intial value: false)
A boolean indicating whether the inheritance has an S form ().

– CV (boolean, intial value: false)
A boolean indicating whether the inheritance has an C vertical form ().

– CH (boolean, intial value: false)
A boolean indicating whether the inheritance has an C horizontal form ().

– C sep (length, intial value: 2cm)
For C inheritance, the distance between the middle of the two classes and the middle of the
inheritance (see figure 3 on page 7).

– inv route (boolean, intial value: false)
This boolean controls the path of the inheritance in case of an L (instead of), a S (
instead of) or a C (and instead of and) kind of inheritance.

– start shift (length, intial value: 0mm)
– end shift (length, intial value: 0mm)
– shift (length, intial value: 0mm)
Extremities shifting specifications respectively for the start, the end and both sides. When used
the inheritance start or end point is shifted by the given value staying on the shape border.
This means that on west and east side, the shift is a y shift and on north and south border, it
is a x shift. The given length may be negative.

– dashed (boolean, intial value: false)
If true the inheritance is typeset dashed.

3.4 Implements

The last form of relation is the implements relation. The macro \umlimplem has the now usual
form of the relation macro as demonstrated by the following example:

N M

P

implements

implements

implements \begin{tikzpicture}[font=\footnotesize]
\umlclass[name=N,label=n](0,0){}
\umlclass[name=M,label=m](4,0){}
\umlclass[name=P,label=p](4,2){}
\umlimplem(m)(n) \umlimplem(m)(p) \umlimplem(n)(p)

\end{tikzpicture}

Télécom Bretagne 11 May 4, 2009

Documentation of the package pgfuml

Implements are relations, in the sense that they will be represented as relations and therefore have
all the options of the relation macro (except for arrow that is specified automatically). And, in
fact, one have the 7 kinds of implements.
The following options are supported by the \umlimplem macro:
– name pos (number between 0 and 1, intial value: 0.5)
The position of the name along the segment from start to end of the implementation.

– D (boolean, intial value: false)
A boolean indicating whether the implements is a direct line whatever the coordinates of its
extremities. Notice that in this case annotations are note displayed.

– S (boolean, intial value: false)
A boolean indicating whether the implements has an S form ().

– CV (boolean, intial value: false)
A boolean indicating whether the implements has an C vertical form ().

– CH (boolean, intial value: false)
A boolean indicating whether the implements has an C horizontal form ().

– C sep (length, intial value: 2cm)
For C implements, the distance between the middle of the two classes and the middle of the
implements (see figure 3 on page 7).

– inv route (boolean, intial value: false)
This boolean controls the path of the implements in case of an L (instead of), a S (
instead of) or a C (and instead of and) kind of implements.

– start shift (length, intial value: 0mm)
– end shift (length, intial value: 0mm)
– shift (length, intial value: 0mm)
Extremities shifting specifications respectively for the start, the end and both sides. When used
the implements start or end point is shifted by the given value staying on the shape border.
This means that on west and east side, the shift is a y shift and on north and south border, it
is a x shift. The given length may be negative.

– dashed (boolean, intial value: true)
If true the implements is typeset dashed.

3.5 Multiple inheritance or implements

The last relation macros are \umlinheritmult and \umlimplemmult that connect a set of in-
heritance (resp. implements) through a common joining point. They are not considered as usual
relation and therefore no options are supported. They only take two arguments between parenthe-
ses. The first corresponds to a comma separated list of classes (or any other rectangular shapes)
and the second argument is the mother class (or any other rectangular shape). The following
example illustrate the use of both macros:

Télécom Bretagne 12 May 4, 2009

Documentation of the package pgfuml

A

qBq

C

O1

O2

O3

O4

implements

implements

\begin{tikzpicture}
\umlclass[name=A,label=a](-1,1){}
\umlclass[name=qBq,label=b](4,0){}
\umlclass[name=C,label=c](1,3){}

\umlclass[name=O1,label=o1](1,5){}
\umlclass[name=O2,label=o2](7,0){}
\umlclass[name=O3,label=o3](-5,1.5){}
\umlclass[name=O4,label=o4](3,-2){}

\begin{scope}[font=\tiny]
\umlinheritmult(a,b,c)(o2)
\umlinheritmult(a,b,c)(o3)
\umlimplemmult(a,b,c)(o1)
\umlimplemmult(a,b,c)(o4)

\end{scope}
\end{tikzpicture}

4 Some class diagram examples

First, a classical class diagram for the pattern composite.

Component

ContainerRawComponent

∗

Télécom Bretagne 13 May 4, 2009

Documentation of the package pgfuml

\begin{tikzpicture}[font=\footnotesize]
\umlclass[name=Component,label=Composant,width=2.6cm](4,2.8){}
\umlclass[name=Container,label=Conteneur,width=2.6cm](6,1){}
\umlclass[name=RawComponent,label=Interacteur,width=2.6cm](2,1){}
\umlinherit[S, inv route](Conteneur)(Composant)
\umlinherit[S, inv route](Interacteur)(Composant)
\umlasso[agre,start shift=5mm,name end=\textasteriskcentered](Conteneur)(Composant)

\end{tikzpicture}

Another one to give some ideas about how to build complex diagrams. Notice, that for aesthetic
reason, I advocate the use of thin spaces before and after : and after + and -. For this, the package
offer a macro \feature that takes three arguments (1) a visibility, (2) a name and (3) a type, the
first being optional. It may be used for attributes as well as for methods, as demonstrated above:

name : type
name
- name : type
- name
+ name(args) : type

\ttfamily
\begin{tabular}{l}

\feature{name}{type} \\
\feature{name}{} \\
\feature[-]{name}{type}\\
\feature[-]{name}{}\\
\feature[+]{name(args)}{type}

\end{tabular}

BankAccount anAccount = new BankAccount("Fabien","Dagnat",1000);

BankAccount

- first : String
- last : String
- balance : float
+ BankAccount(String,String,float)
+ BankAccount(String,String)
+ getBalance() : float
+ deposit(float)

: BankAccount

"Fabien"
"Dagnat"
1000

(1)

L’objet conserve un lien sur sa classe

(2)(3)

Télécom Bretagne 14 May 4, 2009

Documentation of the package pgfuml

\begin{tikzpicture}[remember picture,font=\small]
\draw (7,4.5) node[font=\ttfamily] (code) { BankAccount \marknode{var}{anAccount} = new

\marknode{const}{BankAccount("Fabien","Dagnat",1000);}
};
\begin{scope}[line width=0.8pt,color=red]

\draw ([yshift=-0.1cm]const.south west) -- ([yshift=-0.1cm]const.south east)
node[coordinate,pos=0.5] (middle) {} ;

\end{scope}
\umlclass[name=BankAccount,label=class,parts=3]([yshift=-3.5cm]middle) {

-\,first\,:\,String\\
\feature[-]{last}{String}\\
-\,balance\,:\,float
\separator
\marknode{constr}{+\,BankAccount(String,String,float)}\\
+\,BankAccount(String,String)\\
\feature[+]{getBalance()}{float}\\
\feature[+]{deposit(float)}{}

}
\begin{scope}[line width=0.8pt,color=brown]

\umlclass[name={\,:\,BankAccount},label=obj,parts=2]([xshift=-4cm]class.west) {
\color{red}"Fabien"\\
\color{red}"Dagnat"\\
\color{red}1000

}
\draw[-stealth] ([xshift=-2.5cm]const.south) -- ([xshift=-1cm]class.north)
node[above,pos=0.6] {(1)} ;
\draw[-stealth] (class.attribute west) -- ([yshift=2mm]obj.east);
\draw[dashed,-stealth,rounded corners] (obj.south) |- ([yshift=-2cm]class.west)
node[below,pos=0.65,font=\footnotesize] {L’objet conserve un lien sur sa classe};

\end{scope}
\begin{scope}[line width=0.8pt,color=red]

\draw (constr) node[draw,ellipse,minimum width=7cm,minimum height=0.8cm] (ellipse) {};
\draw[stealth-] (ellipse) -- node[right,pos=0.8] {(2)} (middle);
\draw[line width=0.8pt,-stealth] (ellipse.west) -- ([yshift=-2mm]obj.east);

\end{scope}
\begin{scope}[color=green]

\draw[line width=0.8pt,-stealth] (obj.north) -- node[above left] {(3)} (var.south);
\draw[dashed,-stealth] ([yshift=-1mm]var.south) to[out=-90,in=0] ([yshift=6mm]obj.east);

\end{scope}
\end{tikzpicture}

A non convention UML class diagram also illustrating some advanced usage of tikz:
– styles: a style is a set of options with values that are grouped and named. It is possible to
define such style using tikz (more precisely, the key management package of pgf). Such a style
is defined by the syntax key/.style={set of option setting }. It can be defined either
in the option part of a tikzpicture or more globally using \pgfkeys (for more details see the
pgfkeys part of the pgf documentation). Notice that to be a style for a macro \m of the package
pgfuml, the style has to have the path /pgfuml/m.

– scopes: tikzpictures are composed of drawing elements that may be grouped inside scopes.
These scopes may have graphical options that applies to all elements of the scope. In the
following example, we furthermore use the every node key of a scope to associate a style to
each node it contains.

– pictures inside pictures: inside a TEX part of a tikzpicture, one may use another tikzpicture.
It is very useful for associating labels to parts of a TEX text. To help, this advanced usage a
package pgfextra provides a macro \marknode. This macro has an optional argument con-

Télécom Bretagne 15 May 4, 2009

Documentation of the package pgfuml

sisting in graphical option passed to the node that will contain the text and two mandatory
parameters, first the label and second the text itself. It puts the text inside a node of a sub-
picture. It is used in the following diagram to mark methods of classes to be able to join them
with path.

– curved path: The to path drawing commands enable to easily build curved path.

ButtonListener

+ ButtonListener(Controller)
+ actionPerformed(ActionEvent)

« interface »
Controller

+ event(String)

Model

+ addView(View)
+ removeView(View)
notifyViews()

« interface »
View

+ synchro(Model)

ClicController

+ Controleur(ClicModel)
+ event(String)

ClicModel

- nbClic : int

+ incr()
+ getNumClics() : int

ClicView

+ synchro(Model)

∗
views

1
controller

implements

implements

1
controlledModel

Method in yellow is
fired by user action
Method in magenta
change the display

1

2

3
4

5

Télécom Bretagne 16 May 4, 2009

Documentation of the package pgfuml

\usetikzlibrary{topaths}
\begin{tikzpicture}[font=\footnotesize,out=30,in=150,remember picture,

/pgfuml/class/cStyle/.style={parts=2,body font=\scriptsize\ttfamily},
/pgfuml/class/iStyle/.style={interface,parts=2,body font=\scriptsize\itshape\ttfamily}]
\umlclass[cStyle,name=ButtonListener,label=bl](-8.9,4.2){

\feature[+]{ButtonListener(Controller)}{}\\
\marknode[fill=yellow!60]{ap}{\feature[+]{actionPerformed(ActionEvent)}{}}

}1
\umlclass[iStyle,name=Controller,label=c](-5.7,6){

\marknode{e}{\feature[+]{event(String)}{}}
}

\umlclass[cStyle,name=Model,label=m]([xshift=5.3cm]c){
\feature[+]{addView(View)}{}\\
\feature[+]{removeView(View)}{}\\
\marknode{nv}{\feature[\#]{notifyViews()}{}}

}
\umlclass[iStyle,name=View,label=v]([xshift=4.8cm]m){

\marknode{synchro}{\feature[+]{synchro(Model)}{}}
}
\umlclass[cStyle,name=ClicController,label=ctlr]([yshift=-5.5cm,xshift=5mm]c){
\feature[+]{Controleur(ClicModel)}{}\\
\marknode{ec}{\feature[+]{event(String)}{}}
}
\umlclass[cStyle,name=ClicModel,label=cm,parts=3]([yshift=-4cm]m){

\feature[-]{nbClic}{int}
\separator \marknode{incr}{\feature[+]{incr()}{}} \\
\marknode{nbc}{\feature[+]{getNumClics()}{int}}

}
\umlclass[cStyle,name=ClicView,label=cv]([xshift=4.8cm]cm){

\marknode[fill=magenta!60]{synchroC}{\feature[+]{synchro(Model)}{}}
}
\begin{scope}[font=\scriptsize]

\umlasso[arity end=\textasteriskcentered,name end=views](m)(v)
\umlasso[arity end=1,name end=controller](bl)(c)
\umlimplem(cv)(v)
\umlimplem[start shift=-4mm,D](ctlr)(c)
\umlasso[arity end=1,name end=controlledModel](ctlr)(cm)

\end{scope}
\umlinherit(cm)(m)

\draw ([yshift=-15mm,xshift=-2mm]bl.south) node[text width=3.1cm,fill=yellow!60] (text)
{Method in yellow is fired by user action};
\draw (text.south) node[below,text width=3.1cm,fill=magenta!60]
{Method in magenta change the display};

\begin{scope}[red,->,line width=1pt,
every node/.style={circle,draw,inner sep=2pt,outer sep=5pt}]

\draw (ap) to[out=60,in=180] (e) to[out=0,in=90] ([xshift=-8mm]e.south)
-- ([xshift=-7mm]ec.north) node[left,pos=0.5] {1} ;
\draw (ec) to[out=0,in=180] node[below,pos=0.6] {2} (incr);
\draw (incr) to[out=110,in=-120] node[left] {3} (nv);
\draw (nv) -- (synchro.west) to[out=0,in=90] ([xshift=-8mm]synchro.south)
-- ([xshift=-8mm]synchroC.north) node[left,pos=0.4] {4} ;
\draw (cv) to[out=210,in=-30] node[below] {5} (nbc);

\end{scope}
\end{tikzpicture}

Another example, that illustrates the automatic placement of informations.

Télécom Bretagne 17 May 4, 2009

Documentation of the package pgfuml

Class

- name : String

+ forName(String) : Class
+ get(String) : Member
+ newInstance() : Object
+ isInstance(Object) : boolean

Member

- name : String

Member2

- name : String

Field1

+ get(Object) : Object
+ set(Object,Object)

Field2

+ get(Object) : Object
+ set(Object,Object)

Field3

+ get(Object) : Object
+ set(Object,Object)

Field4

+ get(Object) : Object
+ set(Object,Object)

Constructor

+ invoke(Object,Object[])

Constructor2

+ invoke(Object,Object[])

as
ns

ae
ne

as
ns

ae
ne

as ns

ae ne

as ns

ae ne

as ns

ne
ae

as
ns

ne ae

as ns

ae
ne

as
ns

ae ne

as ns

ae
ne

as
ns

ae ne

as ns

ne
ae

as
ns

ne ae

\newcommand{\aclass}[4]{
\umlclass[name=#1,label=#2,parts=2,body font=\ttfamily\scriptsize](#3){#4}}

\newcommand{\field}[3]{\aclass{#1}{#2}{#3}{
\feature[+]{get(Object)}{Object}\\ \feature[+]{set(Object,Object)}{}}

}
\newcommand{\mem}[3]{\aclass{#1}{#2}{#3}{\feature[-]{name}{String}}}
\newcommand{\cst}[3]{\aclass{#1}{#2}{#3}{\feature[+]{invoke(Object,Object[])}{}}}
\begin{tikzpicture}[font=\footnotesize,

/pgfuml/asso/extremities/.style={font=\scriptsize,arity end=ae,arity start=as,
name end=ne,name start=ns}]

\umlclass[name=Class,label=class,body font=\ttfamily\scriptsize](2,6.5){
\feature[-]{name}{String}
\separator
\underline{\feature[+]{forName(String)}{Class}}\\
\feature[+]{get(String)}{Member}\\
\feature[+]{newInstance()}{Object}\\
\feature[+]{isInstance(Object)}{boolean}

}
\mem{Member}{mem}{8,6.5} \mem{Member2}{mem2}{-4,6.5}
\field{Field1}{f}{6.5,3.5} \field{Field2}{f2}{6.5,9.5}
\field{Field3}{f3}{-2.5,3.5} \field{Field4}{f4}{-2.5,9.5}
\cst{Constructor}{c}{2,2.5} \cst{Constructor2}{c2}{2,10.5}
\umlasso[extremities](class)(mem)
\umlasso[extremities](class)(mem2)
\umlasso[extremities,inv route](class)(c)
\umlasso[extremities,inv route](class)(c2)
\umlasso[extremities,start shift=15mm](class)(f)
\umlasso[extremities,inv route,start shift=-10mm](class)(f)
\umlasso[extremities,start shift=15mm](class)(f2)
\umlasso[extremities,inv route,start shift=10mm](class)(f2)
\umlasso[extremities,start shift=-15mm](class)(f3)
\umlasso[extremities,inv route,start shift=-10mm](class)(f3)
\umlasso[extremities,start shift=-15mm](class)(f4)
\umlasso[extremities,inv route,start shift=10mm](class)(f4)

\end{tikzpicture}

Télécom Bretagne 18 May 4, 2009

Documentation of the package pgfuml

And lastly a more usual UML class diagram that includes an inner class.

MyList

- content : T[]

+ iterator() : Iterator<T>
Itr

- cursor : int

+ hasNext() : boolean
+ next() : T
(+ remove())

T

T

« interface »
Iterable

+ iterator() : Iterator<T>

T « interface »
Iterator

+ hasNext() : boolean
+ next() : T
(+ remove())

T

implements
implements

\begin{tikzpicture}[remember picture,font=\scriptsize,
/pgfuml/class/iStyle/.style={interface,param=T,parts=2,param fill=graphicbackground},
/pgfuml/class/cStyle/.style={param=T,parts=3,param fill=graphicbackground}]
\umlclass[cStyle,name=MyList,label=myList,width=10cm](5.5,2){

\feature[-]{content}{T[]}
\separator
\feature[+]{iterator()}{Iterator<T>}
\hspace{1.5cm}
\begin{tikzpicture}[remember picture,baseline=(itr.north)]

\umlclass[cStyle,name=Itr,label=itr](0,0){
\feature[-]{cursor}{int}
\separator \feature[+]{hasNext()}{boolean}\\
\feature[+]{next()}{T} \\
{\color{gray}(\feature[+]{remove()}{})}

}
\end{tikzpicture}

}
\umlclass[iStyle,name=Iterable,label=iterable]([xshift=-2.4cm,yshift=2.5cm]myList.north){

\feature[+]{iterator()}{Iterator<T>}
}
\umlclass[iStyle,name=Iterator,label=iterator]([yshift=4cm]itr.north){

\feature[+]{hasNext()}{boolean}\\
\feature[+]{next()}{T} \\
{\color{gray}(\feature[+]{remove()}{})}

}
\umlimplem[start shift=-2.4cm](myList)(iterable);
\umlimplem[name pos=0.7](itr)(iterator);

\end{tikzpicture}

5 Some other diagrams examples

5.1 Les diagrammes de séquences

Un premier exemple basique pour l’introduction des commandes.

Télécom Bretagne 19 May 4, 2009

Documentation of the package pgfuml

Un exemple un peu complet qui permet d’illustrer la création et le même ensuite avec des labels
qui permet d’illustrer la création de nœuds réutilsable par la suite.
Un diagramme un peu plus réaliste.
On peut également faire des boucles et des alternatives.

5.2 Les diagrammes de cas d’utilisation

Il est enfin possible de réaliser des diagrammes de cas d’utilisation. Attention, vu la technique
utilisée deux compilations sont necéssaires pour que les liens soient corrects.
Et pour finir un dernier diagramme de cas d’utilisation un peu plus complexe.

6 Modes et variables

6.1 L’environnement diagseq

L’environnement diagseq peut être configuré par les options suivantes:
Nom Type Intention Valeur(s) par défaut
step longueur l’écart entre les messages 10mm
start longueur l’écart au départ 5mm
base longueur la ligne de base des objets préex-

istant
0mm

font chaîne font de la figure \normalsize

Télécom Bretagne 20 May 4, 2009

	Conventions on this documentation
	Classes
	Relations
	Relations
	Associations
	Inheritance
	Implements
	Multiple inheritance or implements
	Some class diagram examples
	Some other diagrams examples
	Les diagrammes de séquences
	Les diagrammes de cas d'utilisation
	Modes et variables
	L'environnement diagseq

